Development of a New Pulsatile Extracorporeal Life Support Device Incorporating a Dual Pulsatile Blood Pump

Author:

Choi S.W.1,Nam K.W.1,Chung J.1,Lee J.C.12,Hwang C.M.23,Won Y.S.4,Sun K.23,Min B.G.256

Affiliation:

1. Interdisciplinary Program in Biomedical Engineering, Graduate School, Seoul National University, Seoul - Korea

2. Korea Artificial Organ Center, Korea University, Seoul - Korea

3. Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul - Korea

4. Department of Thoracic and Cardiovascular Surgery, College of Medicine, Soonchunhyang University, Buchun - Korea

5. Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul - Korea

6. Institute of Medical and Biological Engineering, Medical Research Center, Seoul - Korea

Abstract

A new pulsatile extracorporeal life support device (ECLS) has been developed, designed to sustain pulsatile blood flow during emergency cardiopulmonary resuscitations and cardiopulmonary operations. This device features two identical pulsatile pumps that operate alternately and can therefore provide blood inflow in a more uniform manner than similar systems featuring a single-pump configuration. In order to confirm the presumed benefits of this newly-developed dual pulsatile pump configuration, we have conducted a series of in vitro experiments designed to compare the properties of the new system with a single pump system, specifically with regard to pump delivery rate and active filling efficiency. Our results reveal that the dual pump configuration can, indeed, deliver a higher flow than can the single-pump system, and exhibits an active filling efficiency superior to that of the single-pump configuration. We performed a series of animal experiments to measure the pulsatility of the dual-pump configuration in terms of equivalent energy pressure (EEP). In order to measure EEP, we measured femoral arterial pressure and pump outflow. The results of our animal experiments revealed that the newly-developed pulstile ECLS exhibits sufficient pulsatility in terms of the EEP considerations.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3