Impact of the nature of the capillary wall on plasma refilling during hemodialysis

Author:

Yashiro Masatomo1ORCID,Kotera Hirohisa1

Affiliation:

1. Division of Medical Engineering, Faculty of Medical Care Sciences, Himeji Dokkyo University, Himeji City, Hyogo, Japan

Abstract

Objectives: Our aim was to clarify the impact of the nature of the capillary wall, defined by the contribution of large (LP), small (SP), and ultrasmall (UP) pores, on plasma refilling in a hemodialysis session. Methods: This study included data from 78 patients. The relative blood volume change (ΔBV%) was monitored using a Crit-Line monitor. A bioimpedance device was used to measure extracellular and intracellular fluid volumes, and the excess fluid mass (MExF) was calculated. We simulated blood volume change (sΔBV%) based on a three-pore model. Hydraulic permeability of the capillary wall (LpS) and fractional contribution of LP to LpS (αLP) were determined by fitting sΔBV to ΔBV. The total refilling volume (TVref) was calculated from the total ultrafiltration volume and total blood volume change. Values were standardized to a body surface area of 1.73 m2 and are denoted by the subscript BSA. Results: LpS and αLP were 3.09 (2.32, 4.68) mL/mmHg/min and 0.069 (0.023, 0.109), respectively. The standardized regression coefficient (β) of the ultrafiltration rate (UFRBSA) and initial excess fluid mass (MExF,BSA,0) by multiple linear regression analysis of TVref,BSA without (Model 1) and with (Model 2) αLP were as follows: UFRBSA, 0.714/<0.001 (β/p); MExF,BSA,0, 0.247/<0.001 (Model 1); UFRBSA, 0.799/<0.001; MExF,BSA,0, 0.066/0.237; and αLP, −0.327/<0.001 (Model 2). Conclusions: The impact of volume overload (MExF,BSA,0) on plasma refilling became insignificant with the addition of αLP in the model, suggesting that the nature of the capillary wall described by inter-endothelial gaps (LP) may have a greater impact on plasma refilling than volume overload.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3