In vivo performance of decellularized tracheal grafts in the reconstruction of long length tracheal defects: Experimental study

Author:

Villalba-Caloca Jaime1,Sotres-Vega Avelina1,Giraldo-Gómez David M2ORCID,Gaxiola-Gaxiola Miguel O1,Piña-Barba Maria C2,García-Montes Jazmín A1,Martínez-Fonseca Sergio1,Alonso-Gómez Marcelino1,Santibáñez-Salgado J Alfredo13ORCID

Affiliation:

1. Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, México

2. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México

3. Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, México

Abstract

Background: The repair of long-segment tracheal lesions remains an important challenge. Nowdays no predictable and dependable substitute has been found. Decellularized tracheal scaffolds have shown to be a promising graft for tracheal transplantation, since it is non-immunogenic. Objective: Evaluate in vivo decellularized tracheal allografts performance to replace long tracheal segment. Methods: Forty-five swines underwent surgery as follows: Fifteen trachea donors and 30 receptors of decellularized trachea allografts. The receptors were randomly divided in five groups ( n = 6). In groups I and II, donor trachea segment was decellularized by 15 cycles with sodium deoxycholate and deoxyribonuclease, in group II, the allograft was reinforced with external surgical steel wire. Groups, III, IV, and V decellularization was reduced to seven cycles, supplemented with cryopreservation in group IV and with glutaraldehyde in group V. A 10 rings segment was excised from the receptor swine and the decellularized trachea graft was implanted to re-establish trachea continuity. Results: Both decellularization cycles caused decreased stiffness. All trachea receptors underwent euthanasia before the third post-implant week due to severe dyspnea and trachea graft stenosis, necrosis, edema, inflammation, hemorrhage, and granulation tissue formation in anastomotic sites. Histologically all showed total loss of epithelium, separation of collagen fibers, and alterations in staining. Conclusions: Both decellularization techniques severely damaged the structure of the trachea and the extracellular matrix of the cartilage, resulting in a no functional graft, in spite of the use of surgical wire, cryopreservation or glutaraldehyde treatment. An important drawback was the formation of fibrotic stenosis in both anastomosis.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3