Constructing and evaluating the effect of micron-scale structures on von Willebrand factor damage

Author:

Mei Xu1ORCID,Jiang Qiubo1,Huan Nana1,He Haidong2,Zhang Liudi1

Affiliation:

1. Artificial Organ Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China

2. Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China

Abstract

The incidence of clinical complication gastrointestinal bleeding has been proved as consequence of von Willebrand factor (VWF) damage after mechanical circulatory support in clinic. Many studies have been conducted to evaluate VWF damage, of which the most studied influencing factors are mechanical factors such as shear stress. However, in addition to mechanical factors, VWF damage may also be affected by interface factors. To address this issue, a roller pump circulation platform was established to investigate the effect of material surface micron-scale structures distribution on VWF damage in flow state. A composite micro-structure combining microngrating and micronpost was designed and constructed on the surface of Si wafer by lithography and reactive ion etching, and detailed characterization of material surfaces was also performed. Then the changes of VWF antigen, VWF ristocetin cofactor activity, and the degradation of high molecular weight VWF on these surfaces were investigated and compared. The results showed that, with the encryption of surface micro-structures arrangement, the material surface tends to be more hydrophobic, which is beneficial to reduce VWF damage. Therefore, in the design of material surface inside the mechanical circulatory support devices, it can be considered to add some surface micro-structures with a certain distribution density to change the hydrophilicity and hydrophobicity, so as to minimize the VWF damage. These results can provide important references for the evaluation of VWF damage caused by interface factors, and aid in designing material surface inside the mechanical circulatory support devices.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3