Evaluation of hydromechanical and functional properties of diversion-type microcapsule-suspension bioreactor for bioartificial liver

Author:

Lu Juan1,Zhu Danhua1,Li Lanjuan1ORCID

Affiliation:

1. Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China

Abstract

Aim: To evaluate the performance of a diversion-type microcapsulesuspension fluidized bed bioreactor and a choanoid fluidized bed bioreactor as bioartificial liver support systems. Materials and methods: We evaluated the performance between the modified fluidized bed bioreactor based on diversion-type microcapsule suspension (DMFBB) and choanoid fluidized bed bioreactor (CFBB). The fluidization performance, fluidized height, bed expansion, and the mechanical stability and strength of microcapsule were determined. The viability, synthetic, metabolism, and apoptosis of microcapsulated HepLi5 cells were evaluated. Finally, samples were collected for measurement of alanine aminotransferase, total bilirubin, direct bilirubin, and albumin concentrations. Results: Uniform fluidization was established in both DMFBB and CFBB. The bed expansion, shear force, retention rate, swelling rate, and breakage rate of microcapsules differed significantly between two bioreactors over 3 days. The viability of microencapsulated HepLi5 cells and the activities of cytochrome P450 1A2 and 3A4 increased on each day in DMFBB compared to the control. The albumin and urea concentrations in the DMFBB displayed obvious improvements compared to the control. Caspase3/7 activities in the DMFBB decreased compared to those in the CFBB. At 24 h, the alanine aminotransferase concentration in the DMFBB declined significantly compared to the control. The total and direct bilirubin concentrations within plasma perfusion were decreased and albumin was increased in the DMFBB at 24 h than in the CFBB. Conclusion: The DMFBB shows a promising alternative bioreactor for use in bioartificial liver support systems for application of clinical practice.

Funder

national key research and development program of china

natural science foundation of xinjiang province

natural science foundation of shanxi province

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3