Synthesis and Characterization of a Laminated Hydroxyapatite/Gelatin Nanocomposite Scaffold with Controlled Pore Structure for Bone Tissue Engineering

Author:

Azami Mahmoud1,Samadikuchaksaraei Ali2,Poursamar Seyed Ali1

Affiliation:

1. Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran

2. Department of Biotechnology and Cellular and Molecular Research Center, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran - Iran

Abstract

In this study, a nanostructured scaffold was designed for bone repair using hydroxyapatite (HA) and gelatin (GEL) as its main components. Nanopowders of HA were synthesized, and together with GEL, used to engineer a 3-dimensional nanocomposite combining 3 techniques of layer solvent casting, freeze-drying, and lamination. The results show that the scaffold possesses a 3-dimensional interconnected homogenous porous structure with a porosity of 82% and pore sizes ranging from 300 to 500 μm. It has also been shown that mechanical indices are in the range of spongy bones. Cultured osteoblast-like cells (SaOS-2) have shown an excellent level of cell attachment, migration, and penetration into the porosities of the nanocomposite scaffold. Here, we have shown that by a combination of widely available methods with simple experimental operations, nano-HA powders can be synthesized and used to make 3-dimensional HA/GEL nanocomposites in any desired shape, with mechanical properties comparable to spongy bone.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3