Affiliation:
1. Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran
2. Department of Biotechnology and Cellular and Molecular Research Center, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran - Iran
Abstract
In this study, a nanostructured scaffold was designed for bone repair using hydroxyapatite (HA) and gelatin (GEL) as its main components. Nanopowders of HA were synthesized, and together with GEL, used to engineer a 3-dimensional nanocomposite combining 3 techniques of layer solvent casting, freeze-drying, and lamination. The results show that the scaffold possesses a 3-dimensional interconnected homogenous porous structure with a porosity of 82% and pore sizes ranging from 300 to 500 μm. It has also been shown that mechanical indices are in the range of spongy bones. Cultured osteoblast-like cells (SaOS-2) have shown an excellent level of cell attachment, migration, and penetration into the porosities of the nanocomposite scaffold. Here, we have shown that by a combination of widely available methods with simple experimental operations, nano-HA powders can be synthesized and used to make 3-dimensional HA/GEL nanocomposites in any desired shape, with mechanical properties comparable to spongy bone.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献