Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: Assessment with a verified numerical model

Author:

Graefe Roland1,Henseler Andreas1,Körfer Reiner1,Meyns Bart2,Fresiello Libera23ORCID

Affiliation:

1. ReinVAD GmbH, Aachen, Germany

2. Cardiac Surgery, Katholiek Universiteit Leuven, Leuven, Belgium

3. Institute of Clinical Physiology of the National Research Council, Pisa, Italy

Abstract

Current left ventricular assist devices are designed to reestablish patient’s hemodynamics at rest but they lack the suitability to sustain the heart adequately during physical exercise. Aim of this work is to assess the performance during exercise of a left ventricular assist device with flatter pump pressure-flow characteristic and increased pressure sensitivity (left ventricular assist device 1) and to compare it to the performance of a left ventricular assist device with a steeper characteristic (left ventricular assist device 2). The two left ventricular assist devices were tested at constant rotational speed with a verified computational cardiorespiratory simulator reproducing an average left ventricular assist device patient response to exercise (EXE↑) and a left ventricular assist device patient with no chronotropic and inotropic response (EXE→). According to the results, left ventricular assist device 1 pumps a higher flow than left ventricular assist device 2 both at EXE↑ (6.3 vs 5.6 L/min) and at EXE→ (6.7 vs 6.1 L/min), thus it better unloads the left ventricle. Left ventricular assist device 1 increases the power delivered to the circulation from 0.63 W at rest to 0.67 W at EXE↑ and 0.82 W at EXE→, while left ventricular assist device 2 power shows even a minimal decrease. Left ventricular assist device 1 better sustains exercise hemodynamics and can provide benefits in terms of exercise performance, especially for patients with a poor residual left ventricular function, for whom the heart can hardly accommodate an increase of cardiac output.

Funder

Frans Van de Werf Fund

Erich and Hanna Klessmann foundation

Belgian Fund for Cardiac Surgery

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3