Prevalence and Antibiotic Resistance of 15 Minor Staphylococcal Species Colonizing Orthopedic Implants

Author:

Arciola C.R.12,Campoccia D.1,An Y.H.3,Baldassarri L.4,Pirini V.1,Donati M.E.1,Pegreffi F.1,Montanaro L.12

Affiliation:

1. Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna - Italy

2. Experimental Pathology Department, University of Bologna, Bologna - Italy

3. Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, SC - USA

4. Department of Infectious, Parasitic and Immune-mediated Diseases, Higher Institute of Health, Rome - Italy

Abstract

Several species belonging to Staphylococcus genus (nonSau/nonSep species) exhibit increasing abilities as opportunistic pathogens in colonisation of periprosthesis tissues. Here we report on antibiotic resistance of 193 strains, belonging to nonSau/nonSep species, consecutively collected from orthopedic implant infections in a period of about 40 months. The 193 strains (representing 17% of all staphylococci isolated) were analysed for their antibiotic resistance to 16 different drugs. Five species turned out more prevalent, ranging from 1 to 5%: S. hominis (4.2%), S. haemolyticus (3.7%), S. capitis (2.7%), S. warneri (2.6%), and S. cohnii (1.6%). Among these, the prevalence of antibiotic resistance to penicillins was similar, ranging from 51% to 66%. Conversely, significant differences were observed for all the remaining antibiotics. For S. haemolyticus the resistances to oxacillin and imipenem, the four aminoglycosides and erythromycin were at least twice that of the other three species which were compared. S. warneri was on the contrary the species with the lowest occurrence of resistant strains. Ten species appeared only rarely at the infection sites: S. lugdunensis, S. caprae, S. equorum, S. intermedius, S. xylosus, S. simulans, S. saprophyticus, S. pasteuri, S. sciuri, and S. schleiferi. The behaviours of these species, often resistant to penicillins, were individually analysed. Differences in both the frequencies and the panels of antibiotic resistances observed among the nonSau/nonSep species: i) suggest that horizontal spreading of resistance factors, if acting, was not sufficient per se to level their bio-diversities; ii) highlight and confirm the worrisome appearance within the Staphylococcus genus of emerging “new pathogens”, not homogeneous for their virulence and antibiotic resistance prevalence, which deserve to be recognised and treated individually.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3