Classifying multiple sclerosis patients on the basis of SDMT performance using machine learning

Author:

Buyukturkoglu Korhan1ORCID,Zeng Dana2,Bharadwaj Srinidhi1,Tozlu Ceren3,Mormina Enricomaria4,Igwe Kay C5,Lee Seonjoo6,Habeck Christian1,Brickman Adam M5,Riley Claire S7,De Jager Philip L8ORCID,Sumowski James F9ORCID,Leavitt Victoria M1

Affiliation:

1. Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA

2. Department of Biostatistics, Columbia University, New York, NY, USA

3. Department of Radiology, Weill Cornell Medicine, New York, NY, USA

4. Department of Clinical and Experimental Medicine, Policlinico Universitario “G. Martino,” University of Messina, Messina, Italy/Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy

5. Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

6. Department of Biostatistics, Columbia University, New York, NY, USA/Mental Health Data Science, Research Foundation for Mental Hygiene, Inc, New York State Psychiatric Institute, New York, NY, USA

7. Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA

8. Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA/Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA

9. Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai Hospital, New York, NY, USA

Abstract

Objective: To build a model to predict cognitive status reflecting structural, functional, and white matter integrity changes in early multiple sclerosis (MS). Methods: Based on Symbol Digit Modalities Test (SDMT) performance, 183 early MS patients were assigned “lower” or “higher” performance groups. Three-dimensional (3D)-T2, T1, diffusion weighted, and resting-state magnetic resonance imaging (MRI) data were acquired in 3T. Using Random Forest, five models were trained to classify patients into two groups based on 1—demographic/clinical, 2—lesion volume/location, 3—local/global tissue volume, 4—local/global diffusion tensor imaging, and 5—whole-brain resting-state-functional-connectivity measures. In a final model, all important features from previous models were concatenated. Area under the receiver operating characteristic curve (AUC) values were calculated to evaluate classifier performance. Results: The highest AUC value (0.90) was achieved by concatenating all important features from neuroimaging models. The top 10 contributing variables included volumes of bilateral nucleus accumbens and right thalamus, mean diffusivity of left cingulum-angular bundle, and functional connectivity among hubs of seven large-scale networks. Conclusion: These results provide an indication of a non-random brain pattern mostly compromising areas involved in attentional processes specific to patients who perform worse in SDMT. High accuracy of the final model supports this pattern as a potential neuroimaging biomarker of subtle cognitive changes in early MS.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3