Optimal In Situ Fenestration Technique With Laser Perforation and Balloon Dilation for Aortic Stent-Grafts

Author:

Lin Jing1,Rodriguez Limael E.2,Nutley Mark3,Jun Lu1,Mao Ying14,Parikh Niraj2,Alie-Cusson Fanny2,Zhang Ze4,Wang Lu1,Panneton Jean M.2,Guidoin Robert4ORCID

Affiliation:

1. Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, China

2. Division of Vascular Surgery, Eastern Virginia Medical School, Norfolk, VA, USA

3. Division of Vascular Surgery and Department of Diagnostic Imaging, University of Calgary, Peter Lougheed Centre, Calgary, Alberta, Canada

4. Department of Surgery, Faculty of Medicine, Université Laval and Centre de Recherche du CHU, Québec, Canada

Abstract

Purpose: To evaluate the response of various stent-grafts after laser fenestration and dilation with noncompliant balloons to determine the optimal therapeutic combination for this treatment technique. Materials and Methods: Five aortic stent-grafts were evaluated ex vivo: the Bolton RelayPlus, Jotec E-vita Thoracic 3G, Medtronic Valiant, Cook Zenith Alpha, and Vascutek Anaconda. Small holes were created using an excimer laser with the grafts submerged in saline. Five rows of 5 fenestrations were created, 4 holes in each row were dilated once with a 6-, 8-, 10-, or 12-mm-diameter noncompliant balloon to the specified nominal pressure (one hole served as the control). The saline solution from each stent-graft was collected and qualitatively analyzed for debris. The fenestrations were evaluated under light and scanning electron microscopes. The maximum diameter and area for each fenestration were measured. The direction and length of tears were assessed. Results: The fenestration was feasible and reproducible in all the stent-grafts. The mean area of fenestration ranged from 7.63±1.63 to 14.75±0.73 mm2 when using balloons of 6- and 8-mm diameter, respectively. The 10- and 12-mm-diameter balloons caused a significant increase in area, variability, and tearing. The Anaconda graft tended to tear in the weft direction, while the other devices tore in the warp direction when using the 10- and 12-mm-diameter balloons. Dilation of the RelayPlus and Anaconda grafts with 6- and 8-mm-diameter balloons provided minimal tearing and precise fenestrations. Melted fiber remnants were observed after filtration of the saline solution for all devices. Conclusion: Laser fenestration and dilation with noncompliant balloons is a relatively simple and reproducible option for revascularization in urgent, complex aortic endovascular repairs. In our model, large balloons (ie, >10 mm) increased the destruction and tearing of the fabric. The maximum dilation recommended is 6 to 8 mm to avoid significant tears. Development of stent-grafts or novel fabrics designed explicitly for fenestration is needed to reduce potential complications.

Funder

Laval University Department of Surgery

Shanghai Sailing Program

Biomedical Textile Materials Science and Technology 111 Project

Fonds de Recherche en Chirurgie Vasculaire of the CHU de Québec – Université Laval

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Surgery

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3