Deep Learning Prediction for Distal Aortic Remodeling After Thoracic Endovascular Aortic Repair in Stanford Type B Aortic Dissection

Author:

Zhou Min123,Luo Xiaoyuan45,Wang Xia6,Xie Tianchen123,Wang Yonggang123,Shi Zhenyu123ORCID,Wang Manning45,Fu Weiguo123ORCID

Affiliation:

1. Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

2. Institute of Vascular Surgery, Fudan University, Shanghai, China

3. National Clinical Research Center for Interventional Medicine, Shanghai, China

4. Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China

5. Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China

6. Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Abstract

Purpose: This study aimed to develop a deep learning model for predicting distal aortic remodeling after proximal thoracic endovascular aortic repair (TEVAR) in patients with Stanford type B aortic dissection (TBAD) using computed tomography angiography (CTA). Methods: A total of 147 patients with acute or subacute TBAD who underwent proximal TEVAR at a single center were retrospectively reviewed. The boundary of aorta was manually segmented, and the point clouds of each aorta were obtained. Prediction of negative aortic remodeling or reintervention was accomplished by a convolutional neural network (CNN) and a point cloud neural network (PC-NN), respectively. The discriminatory value of the established models was mainly evaluated by the area under the receiver operating characteristic curve (AUC) in the test set. Results: The mean follow-up time was 34.0 months (range: 12–108 months). During follow-up, a total of 25 (17.0%) patients were identified as having negative aortic remodeling, and 16 (10.9%) patients received reintervention. The AUC (0.876) by PC-NN for predicting negative aortic remodeling was superior to that obtained by CNN (0.612, p=0.034) and similar to the AUC by PC-NN combined with clinical features (0.884, p=0.92). As to reintervention, the AUC by PC-NN was significantly higher than that by CNN (0.805 vs 0.579; p=0.042), and AUCs by PC-NN combined with clinical features and PC-NN alone were comparable (0.836 vs 0.805; p=0.81). Conclusion: The CTA-based deep learning algorithms may assist clinicians in automated prediction of distal aortic remodeling after TEVAR for acute or subacute TBAD. Clinical Impact: Negative aortic remodeling is the leading cause of late reintervention after proximal thoracic endovascular aortic repair (TEVAR) for Stanford type B aortic dissection (TBAD), and possesses great challenge to endovascular repair. Early recognizing high-risk patients is of supreme importance for optimizing the follow-up interval and therapy strategy. Currently, clinicians predict the prognosis of these patients based on several imaging signs, which is subjective. The computed tomography angiography-based deep learning algorithms may incorporate abundant morphological information of aorta, provide with a definite and objective output value, and finally assist clinicians in automated prediction of distal aortic remodeling after TEVAR for acute or subacute TBAD.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3