Fabrication and characterization of polyetherimide nanofoams using supercritical CO2

Author:

Zhou Changchun1,Vaccaro Nicholas2,Sundarram Sriharsha S1,Li Wei1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA

2. Department of Mechanical Engineering, University of Washington, Seattle, WA, USA

Abstract

Polymer nanofoams have recently attracted significant interest in both industry and academia. The unique nanoscaled porous structure could bring unprecedented material properties that have not been seen in conventional or microcellular polymer foams. It has been hypothesized that nanofoams could have a much higher specific strength and toughness as well as significantly improved thermal resistivity. In this research, we study the fabrication and characterization of polyetherimide nanofoams using a supercritical carbon dioxide foaming process. A process map indicating the conditions to obtain various polyetherimide foam structures, including micro-, micro/nano transition, and nanofoams has been established. Two types of nanofoams were observed, one made with high gas concentrations and the other with high foaming temperatures. The one with high gas concentrations exhibited a higher specific modulus than that of unfoamed polyetherimide. Nanofoams generally showed a higher thermal resistivity than microfoams with similar relative densities. It is found that the equilibrium CO2 concentration in polyetherimide under the supercritical conditions does not fit well to the well-known dual-mode sorption model. A new gas concentration model was developed to describe the CO2 uptake under supercritical conditions.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3