Sclareol ameliorates liver injury by inhibiting nuclear factor-kappa B/NOD-like receptor protein 3-mediated inflammation and lipid metabolism disorder in diabetic mice

Author:

Tang Leilei1,Mei Xuan2,Ye Mengling3,Liu Yang3,Huang Yujie4,Yu Jiawen1,Zhang Lingdi1,Zhuge Sheng5,Jiang Guojun1,Zhu Jianjun1ORCID

Affiliation:

1. Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China

2. Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China

3. School of Pharmacy, Hangzhou Normal University, Hangzhou, China

4. Research Center for Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China

5. Department of Surgery, The First People 's Hospital of Yuhang District, Hangzhou, China

Abstract

Objectives: Sclareol (SCL) is a natural diterpene with anti-inflammation and antioxidant properties. This study aimed to assess the hepatoprotective effects of SCL in diabetic mice. Methods: SCL (10 mg/kg) was administered intragastrically to C57BL/6 mice with streptozotocin-induced diabetes daily for 5 weeks to evaluate its beneficial effects in liver injury. Body and liver weight and blood glucose levels were measured. Liver histopathology, fibrosis, and lipid accumulation were evaluated using hematoxylin and eosin, Masson's trichrome, and Oil Red O staining, respectively. Serum hepatic enzyme and lipid levels were measured using an automatic biochemical analyzer. Hepatocellular apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Oxidative stress markers and reactive oxygen species (ROS) were measured using appropriate assay kits. The effects of sclareol on inflammation and lipid metabolism was evaluated by enzyme-linked immunosorbent assay (ELISA), immunohistochemical analysis, and Western blot assays. Results: SCL significantly decreased serum liver enzymes and lipids levels, and alleviated adipogenesis and fibrosis. Moreover, the protein levels of acetyl-CoA carboxylase and sterol response element-binding protein 1 were downregulated, whereas the expression of carnitine palmitoyl transferase 1 was upregulated. SCL increased the antioxidant activity, and decreased ROS levels. SCL alleviated hepatic mitochondrial damage. Furthermore, SCL inhibited Kupffer cell infiltration and reduced serum inflammatory cytokine levels. SCL significantly downregulated the protein expression of nuclear factor-kappa B (NF-κB) P65, NOD-like receptor protein 3 (NLRP3), caspase 1, and interleukin-1β. Conclusions: Our findings suggest that SCL improves diabetes-induced liver injury by alleviating the NF-κB/NLRP3-mediated inflammation and lipid metabolism disorder.

Funder

Major Science and Technology Plan Project of Xiaoshan

Natural Science Foundation of Zhejiang Province

Science and Technology Plan Project of Hangzhou

Development Support Science and Technology Special Project of Hangzhou Biomedical and Health Industry

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3