Construction and evaluation of an aging-associated genes-based model for pancreatic adenocarcinoma prognosis and therapies

Author:

Zhao Junjie1,Guan Kelei1,Xing Jiyuan2ORCID

Affiliation:

1. Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin

2. Infectious Diseases Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Abstract

Objectives: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor. Despite extensive research, the precise role of aging-related genes in the initiation, microenvironment regulation, and progression of PAAD remains unclear. Methods: Patients with PAAD were selected from the International Cancer Genome Consortium (ICGC), and The Cancer Genome Atlas (TCGA) cohorts and the cell senescence-associated genes were obtained from CellAge. ConsensusClusterPlus was utilized for cluster identification. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct a prognosis prediction model. Results: We identified three clusters (C1, C2, and C3) based on aging-associated gene profiles. The C1 cluster had a shorter overall survival time, advanced clinical grades, lower immune ESTIMATE score, and tumor immune dysfunction and exclusion (TIDE) score than the C3 subgroup. Moreover, signaling pathways for cell cycle activation were enriched in the C1 cluster. We also identified eight hub genes and constructed a risk model. The high cellular senescence-related signature (CSRS) score subtype exhibited poor prognosis, advanced clinical grades, M2 macrophage infiltration, higher immune checkpoint gene expression, and lower immunotherapeutic benefits. Conclusion: Our risk score model shows high prediction accuracy and survival prediction ability in individual clinical prognosis and pre-immunotherapy evaluation.

Funder

Henan Medical Science and Technology Joint Building Program

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3