An artificial-intelligence-based petrophysical property predictor for compositional volatile oil reservoir using three-phase production data

Author:

Zhang Zhenzihao1ORCID,Ertekin Turgay2,Ma Xianlin1,Zhan Jie1

Affiliation:

1. Department of Petroleum Engineering, Xi’an Shiyou University, Shaanxi, China

2. John and Willie Leone Family, Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA, USA

Abstract

When considering multiphase flow scenarios, the interpretation of petrophysical properties poses significant challenges for production forecasts and reservoir modeling. The findings of the numerical modeling were therefore subject to uncertainty because characteristics like relative permeability and capillary pressure curve were hardly ever bound by interpretations. The uncertainty may result in inaccurate predictions of reservoir performance and skewed perceptions of the reservoir. Due to the difficulty in directly interpreting such property from the available field data and the expensive cost of coring, analyses or experimental measurements to determine relative permeability and capillary pressure were infrequently carried out. Such a gap would be filled by a straightforward yet rigorous method. In this study, we develop production projections for a wide range of three-phase compositional volatile oil reservoirs. Then, we used an artificial neural network to figure out how petrophysical characteristics and production data relate to one another. The artificial neural network model was adjusted, and the final trained model was tested blindly to determine how well it predicted permeability, multiphase relative permeability, and capillary pressure data. For the testing scenarios, consistency is seen between the predicted values and the original ones, despite some mispredictions being present. To provide production projections that can be compared to those from the reservoir model that include the initial petrophysical characteristic, the anticipated properties are then propagated into reservoir models. The comparison findings show that for 65/59/34 out of 74 testing scenarios, the reservoir model with artificial neural network-predicted features can anticipate oil/gas/water output with < 20% inaccuracy. With the developed artificial neural network tool, the reservoir engineers can evaluate the three-phase relative permeability surface from rate-transient data conveniently improving the accuracy of the relative permeability data implemented by history matching or from core experiments which sometimes are extremely expensive. The findings of this study can help for a better understanding of the relationships between three-phase rate-transient data and the relative permeability surface as well as the horizontal/vertical permeability.

Funder

The Pennsylvania State University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3