Ductile–brittle indentation fracture transitions in hard coatings

Author:

Bhattacharyya A. S.1ORCID,Rajak A.K.1,Bhattacharyya K.2

Affiliation:

1. Department of Metallurgical and Materials Engineering, Central University of Jharkhand, Brambe, Ranchi, India

2. Department of Mechanical Engineering, Netaji Subhash Engineering College, Kolkata, India

Abstract

The article has provided a novel way of finding the probability of fracture ( Pf) based on modifications of some established concepts. It has also discussed ductile to brittle as well as brittle to ductile transitions in the same coating/substrate system subject to differences in crystallisation, indenter sharpness, sliding modes and dislocation kinetics. The indentation positioning and nanocrystalline features cause ambiguity in the results and need meticulous analysis. As a result of increased dislocation movement, the crystalline portions toughened in contrast to the amorphous parts, which were more brittle. The Pf, which varies and reaches a maximum of 52% in the amorphous or near-amorphous area, was calculated using the Weibull distribution. Transitions between ductility and brittleness can be seen in sliding indentations. Evidence of adhesive failure, which required better coating component inspection because it happened significantly earlier, was shown. Finite-element modelling was used to analyse the stress and provide information on dislocation motions and the impact of indenter shape on fracture. The outcomes are advantageous for the production of devices based on nano/micro-electro-mechanical systems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3