Acoustic response of high-speed deep groove ball bearing by modifying the internal geometry

Author:

Borse Deepak1ORCID,Tungikar VB1

Affiliation:

1. Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded, India

Abstract

In this paper, a mathematical model to predict acoustic responses of high-speed bearing has been developed and demonstrated in an application of Induction motors. Effect on the acoustic behaviour of bearing has studied by modifying the internal geometry, such as the number of rotating elements, curvature ratio, rotating speed with the oval shape of the track raceway due to pre-operational damage. The mathematical model predicts the contact stress, elliptical contact area, noise level dB and Frequencies of waviness pattern. High-speed bearing is tested at four different speeds to monitor acoustic behaviour. This drive end bearing undergoes different rotational speeds; however, the author has simulated the results at a majorly driven constant speed. The author has incorporated application-level testing at the customized test rig. The mathematical model has simulated using coupled governing equations with the help of the Ranga-Kutta method. The simulation and experimental results presented in this paper in the form of a waterfall diagram, FFT spectrum and colour pressure plots. Acoustic characteristics during measurements of the rolling bearing have shown systematically to correlate the mathematical model with an experimental result. Results indicate the remarkable influence of raceway nonconformities of bearing on the noise level. The novelty of research study is to estimate the amplitude of noise level due to waviness generated on rings of bearing after pre-operation damage which is the realistic scenario that occurred after a complaint recorded by the motor manufacturer. The authors believe that this technique enables the bearing designer to choose the appropriate diametric ratio of the ball and track curvature for elliptical contact stress as well as acoustic level. This method is developed specifically for an application of drive-end position ball bearing. Practical use of this method is to determine the Noise level of an electric motor (up to 60 kW capacities) due to improper handling and inappropriate installation of bearing which cause inherent waviness on components.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Deep Learning in Signal Modulation Recognition System for Wireless Communication;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

2. Noise calculation method of deep groove ball bearing caused by vibration of rolling elements considering raceway waviness;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-10-31

3. Failure Investigation of Induction Motor Bearing of Electric Vehicle Due to Manufacturing Defect;Lecture Notes in Mechanical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3