Virus-induced loss of class I MHC antigens from the surface of cells infected with myxoma virus and malignant rabbit fibroma virus.

Author:

Boshkov L K1,Macen J L1,McFadden G1

Affiliation:

1. Department of Medicine, University of Alberta, Edmonton, Canada.

Abstract

Abstract Shope fibroma virus (SFV) is a leporipoxvirus that causes localized benign fibromas in immunocompetent adult rabbits that spontaneously regress due, in part, to a cell-mediated immune response. Myxoma virus (MYX) and malignant rabbit fibroma virus (MRV) are related leporipoxviruses that induce rapidly lethal generalized infections accompanied by tumors and immunosuppression. Because only these latter two viruses are known to compromise cell-mediated antiviral responses, cell surface levels of class I MHC molecules in SFV-, MRV-, and MYX-infected cells were investigated by fluorescent activated cell sorting analysis using a variety of different anti-HLA mAb. After infection with MYX or MRV there is a rapid decrease in the levels of detectable surface class I epitopes as detected by each antibody and by 24 h postinfection class I MHC Ag levels at the cell surface approach the level of background fluorescence observed with control antibodies. In contrast, only a moderate class I decrease is seen during infection with either SFV or vaccinia virus, an orthopoxvirus that is neither tumorigenic nor immunosuppressive. Surface class I marker loss induced by MYX and MRV is not simply due to nonspecific inhibition of total cellular protein synthesis by the viruses because class I levels decrease much further than the extent measured by estimating surface marker turnover in the presence of the protein synthesis inhibitor cycloheximide. Thus the loss of cellular surface class I molecules greatly exceeds the drop in level caused by complete blockage of host cell gene expression, and must involve removal or masking of preexisting class I epitopes from the cell surface by MRV/MYX. Cell surface levels of the transferrin receptor are unaffected by MYX and MRV infection, suggesting the observed class I decrease is not a nonspecific effect on total cell surface glycoproteins. Analysis of cells infected with MRV/MYX in the presence of cycloheximide or of cytosine arabinoside, an inhibitor of poxviral DNA replication, indicates that the class I marker loss is mediated in part by one or more viral late gene products. A probable explanation is that MRV/MYX late protein(s) interact with the class I MHC complex to either physically sequester these away from the cell surface and inhibit their recycling or else induce a conformational change that precludes recognition by all class I antibodies tested. In either event, we propose that such a major perturbation of the class I MHC complex would likely downregulate the class I-mediated presentation of viral Ag required to initiate cell-mediated immunity to these viruses.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3