The Influence of Structure from Motion on Motion Correspondence

Author:

Mukai Ikuko1,Watanabe Takeo1

Affiliation:

1. Department of Psychology, 64 Cummington Street, Boston University, Boston, MA 02215, USA

Abstract

The visual system has a remarkable ability to reconstruct 3-D structure from moving 2-D features. The processing of structure from motion is generally thought to consist of two stages. First, the direction and speed of features is measured (2-D velocity measurement) and, second, 3-D structure is reconstructed from the measured 2-D velocities (3-D structure recovery). Most models have assumed that these stages occur in a bottom – up fashion. Here, however, we present evidence that the 3-D structure-recovery stage influences the 2-D velocity-measurement stage. We developed a stimulus in which two perceptual modes of motion correspondence (one-way translation versus oscillation), and two perceptual modes of 3-D surface structure (flat surface versus cylinder) could be achieved. We found that the likelihood of perceiving both one-way motion and cylindrical structure increased in similar ways with increasing frame duration. In subsequent experiments we found, first, that a higher likelihood of perceiving one-way motion did not affect the likelihood of perceiving cylindrical structure; and, second, that a higher likelihood of perceiving cylindrical structure increased the likelihood of perceiving one-way motion. These results suggest that the higher, 3-D structure-recovery stage may influence the lower, 2-D motion-correspondence stage. This result is not in accordance with most computational models that assume that there is only one-way, feedforward information processing from the 2-D velocity (energy)-measurement stage to the 3-D structure-recovery stage. Perhaps, one of the roles of feedback processing is to seek consensus of the information processed in different stages.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3