Estimation of Parameters for an Archetypal Model of Cardiomyocyte Membrane Potentials

Author:

Aziz Muhamad H. N., ,Simitev Radostin D.,

Abstract

Contemporary realistic mathematical models of single-cell cardiac electrical excitation are immensely detailed. Model complexity leads to parameter uncertainty, high computational cost and barriers to mechanistic understanding. There is a need for reduced models that are conceptually and mathematically simple but physiologically accurate. To this end, we consider an archetypal model of single-cell cardiac excitation that replicates the phase-space geometry of detailed cardiac models, but at the same time has a simple piecewise-linear form and a relatively low-dimensional configuration space. In order to make this archetypal model practically applicable, we develop and report a robust method for estimation of its parameter values from the morphology of single-stimulus action potentials derived from detailed ionic current models and from experimental myocyte measurements. The procedure is applied to five significant test cases and an excellent agreement with target biomarkers is achieved. Action potential duration restitution curves are also computed and compared to those of the target test models and data, demonstrating conservation of dynamical pacing behaviour by the fine-tuned archetypal model. An archetypal model that accurately reproduces a variety of wet-lab and synthetic electrophysiology data offers a number of specific advantages such as computational efficiency, as also demonstrated in the study. Open-source numerical code of the models and methods used is provided.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

Subject

Genetics,Ecological Modeling,Biochemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phenomenological analysis of simple ion channel block in large populations of uncoupled cardiomyocytes;Mathematical Medicine and Biology: A Journal of the IMA;2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3