Affiliation:
1. China University of Geosciences, Institute of Geophysics & Geomatics, Wuhan, China..
2. China University of Geosciences, School of Mathematics and Physics, Wuhan, China.(corresponding author); .
Abstract
Separation of potential field data forms the basis of inversion and interpretation. The low-rank matrix theory is used for the separation of potential field data. A theoretical analysis led to the approximate equation that demonstrates the relation between the amplitudes of the wavenumber components of potential field data and the singular values of the trajectory matrix embedded from the potential field data matrix. Therefore, the low-rank feature of the trajectory matrix of regional field data and the sparse feature of the trajectory matrix of residual field data can be obtained based on the features of the power spectrum of the potential field data. Based on this, we have developed a low-rank matrix decomposition model for the separation of the trajectory matrix of the potential field data. Minimizing the rank of the trajectory matrix of the regional field data and the [Formula: see text]-norm of the trajectory matrix of the residual field data is a double-objective optimization task, and this optimization task can be solved by the inexact augmented Lagrange multiplier algorithm. The weighting parameter is robust and easy to set. Numerical experiment results indicate that our method is robust, and the separation errors of the method are smaller compared to the matched filtering and wavelet analysis methods. In addition, our method can be easily implemented and has clear geophysical significance. Finally, our method is applied on real data sets in the Daye area, Hubei Province, China. The separated gravity and magnetic fields coincide well with target geologic sources.
Funder
National Key R&D Program of China
Science Technology Research Project of Hubei Provincial Department of Education
Hubei Subsurface Multi-scale Imaging Key Laboratory
Fundamental Research Funds for the Central Universities
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献