Stripping very low frequency communication signals with minimum shift keying encoding from streamed time-domain electromagnetic data

Author:

Macnae James1

Affiliation:

1. RMIT University, School of Applied Sciences, Melbourne, Victoria, Australia..

Abstract

The objective of this research is to eliminate very low frequency (VLF) communication signals with frequencies in the range of 15–25 kHz from streamed time-domain electromagnetic data. The frequency-domain approach of notch filtering or bandwidth limitation is unsatisfactory when early delay-time data are required in a time-domain system. United States military VLF transmitters presently communicate [Formula: see text] using minimum shift keying modulation, and it is possible to derive the encrypted bitstream from the data sampled at typical geophysical streaming rates. The method involves convolving the data with waveforms of frequency different by one-quarter of the bit rate above and below the carrier frequency and using the difference between the convolutions to predict the transmitted bits. The transmitted signal is then exactly recreated from the decoded bits, and the predicted signal at the receiver is subtracted from the data stream. It is possible to predict bit rates and encoding methods from other military transmitters through data analysis and again subtract the predicted signals from the streamed data. This procedure reduces the variance of data, implying that unwanted VLF signals have been reduced by a factor of three to nine in stations thousands of kilometers from a VLF transmitter. Much larger signal/noise improvements are predicted for stations within a few hundred kilometers of the VLF source. Lower degrees of improvement are noted from Indian and Chinese transmitters, which appear to have different encoding and modulation methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference26 articles.

1. Allard, M., 2007, On the origin of the HTEM species, in B. Milkereit, ed. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Decennial Mineral Exploration Conferences, 355–374.

2. ELF and VLF radio waves

3. Quantification of modeling errors in airborne TEM caused by inaccurate system description

4. Inversion of band-limited TEM responses

5. Near-Surface Applied Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3