Theory-guided data science-based reservoir prediction of a North Sea oil field

Author:

Downton Jonathan E.1,Collet Olivia2,Hampson Daniel P.1,Colwell Tanya1

Affiliation:

1. CGG GeoSoftware, Calgary, Alberta, Canada..

2. CGG GeoSoftware, Massy, France..

Abstract

Data science-based methods, such as supervised neural networks, provide powerful techniques to predict reservoir properties from seismic and well data without the aid of a theoretical model. In these supervised learning approaches, the seismic-to-rock property relationship is learned from the data. One of the major factors limiting the success of these methods is whether there exists enough labeled data, sampled over the expected geology, to train the neural network adequately. To overcome these issues, this paper explores hybrid theory-guided data science (TGDS)-based methods. In particular, we build a two-component model in which the outputs of the theory-based component are the inputs in the data science component. First, we simulate many pseudowells based on the well statistics in the project area. The reservoir properties, such as porosity, saturation, mineralogy, and thickness, are all varied to create a well-sampled data set. Elastic and synthetic seismic data are then generated using rock physics and seismic theory. The resulting collection of pseudowell logs and synthetic seismic data, called the synthetic catalog, is used to train the neural network. The derived operator is then applied to the real seismic data to predict reservoir properties throughout the seismic volume. This TGDS method is applied to a North Sea data set to characterize a Paleocene oil sand reservoir. The TGDS results better characterize the geology and well control, including a blind well, compared to a solely theory-based approach (deterministic inversion) and a data science-based approach (neural network using only the original wells). These results suggest that theory and data science can complement each other to improve reservoir characterization predictions.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference23 articles.

1. Consolidating rock-physics classics: A practical take on granular effective medium models

2. Convolutional neural network for seismic impedance inversion

3. Downton, J. E., and D. P. Hampson, 2018, Deep neural networks to predict reservoir properties from seismic: Presented at GeoConvention 2018, CSPG CSEG CWLS.

4. Applied Regression Analysis

5. Elasticity of high‐porosity sandstones: Theory for two North Sea data sets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3