Reverse time adjoint migration

Author:

Liu Hongwei1ORCID,Ali Almomin1,Luo Yi1

Affiliation:

1. EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia..

Abstract

From a mathematical perspective, it is desirable to apply the adjoint operator for back propagating the receiver wavefield for migration of data residuals for inversion. For frequency-domain direct solvers, it is straightforward to apply the adjoint operator, whereas in most real applications of time-domain finite-difference (TDFD) stencils, the forward-propagation kernel function is reused for backward propagation for simplicity. However, when applying the exact adjoint operator, the migration result will be different, especially when strong variations exist in the velocity model. Actually, these three operators (forward, backward, and adjoint of the forward) can be expressed in matrix forms under the Born approximation for acoustic wave equations. These expressions linearly relate model perturbations to recorded seismic data. Every element in the matrices is well-defined, and all involved operations, such as the imaging condition and wavefield sampling, are included in the closed-form matrix expressions. These matrix expressions provide a platform for analyzing seismic modeling and inversion via mature linear algebra methodologies and provide clear strategies for developing computer algorithms. By analyzing the similarity of the matrix expressions, one can find that the time stepping approaches for all three operators are essentially the same. Based on this observation, a new time-marching stencil can be designed to realize the TDFD adjoint operator. Compared with traditional reverse time migration, the new method using the adjoint operator can provide better image quality, especially at sharp velocity boundaries.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3