Spectral structure-oriented filtering of seismic data with self-adaptive paths

Author:

Gómez Julián L.1ORCID,Velis Danilo R.2ORCID

Affiliation:

1. CONICET and YPF-Tecnología, Avenida del Petróleo Argentino, S/N, Berisso, Argentina.(corresponding author).

2. Universidad Nacional de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, Argentina and CONICET, La Plata, Argentina..

Abstract

We have developed an algorithm to perform structure-oriented filtering (SOF) in 3D seismic data by learning the data structure in the frequency domain. The method, called spectral SOF (SSOF), allows us to enhance the signal structures in the [Formula: see text]-[Formula: see text]-[Formula: see text] domain by running a 1D edge-preserving filter along curvilinear self-adaptive trajectories that connect points of similar characteristics. These self-adaptive paths are given by the eigenvectors of the smoothed structure tensor, which are easily computed using closed-form expressions. SSOF relies on a few parameters that are easily tuned and on simple 1D convolutions for tensor calculation and smoothing. It is able to process a 3D data volume with a 2D strategy using basic 1D edge-preserving filters. In contrast to other SOF techniques, such as anisotropic diffusion, anisotropic smoothing, and plane-wave prediction, SSOF does not require any iterative process to reach the denoised result. We determine the performance of SSOF using three public domain field data sets, which are subsets of the well-known Waipuku, Penobscot, and Teapot surveys. We use the Waipuku subset to indicate the signal preservation of the method in good-quality data when mostly background random noise is present. Then, we use the Penobscot subset to illustrate random noise and footprint signature attenuation, as well as to show how faults and fractures are improved. Finally, we analyze the Teapot stacked and depth-migrated subsets to show random and coherent noise removal, leading to an improvement of the volume structural details and overall lateral continuity. The results indicate that random noise, footprints, and other artifacts can be successfully suppressed, enhancing the delineation of geologic structures and seismic horizons and preserving the original signal bandwidth.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference30 articles.

1. 3D edge-preserving smoothing and applications

2. Lineament-preserving filtering

3. Bakker, P., L. J. van Vliet, and P. W. Verbeek, 1999, Edge preserving orientation adaptive filtering: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 535–540.

4. Random noise reduction

5. The Use of Structure Tensors in the Analysis of Seismic Data

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3