Practical aspects and applications of 2D stereotomography

Author:

Billette Frederic1,Bégat Soazig Le2,Podvin Pascal2,Lambaré Gilles2

Affiliation:

1. Formerly École des Mines de Paris; presently BP, Upstream Technology, 200 Westlake Park Boulevard, Houston, Texas 77079.

2. École des Mines de Paris, Centre de Recherche en Géophysique, 35 rue Saint Honoré, 77 305 Fontainebleau, France. Emails:

Abstract

Stereotomography is a new velocity estimation method. This tomographic approach aims at retrieving subsurface velocities from prestack seismic data. In addition to traveltimes, the slope of locally coherent events are picked simultaneously in common offset, common source, common receiver, and common midpoint gathers. As the picking is realized on locally coherent events, they do not need to be interpreted in terms of reflection on given interfaces, but may represent diffractions or reflections from anywhere in the image. In the high‐frequency approximation, each one of these events corresponds to a ray trajectory in the subsurface. Stereotomography consists of picking and analyzing these events to update both the associated ray paths and velocity model. In this paper, we describe the implementation of two critical features needed to put stereotomography into practice: an automatic picking tool and a robust multiscale iterative inversion technique. Applications to 2D reflection seismic are presented on synthetic data and on a 2D line extracted from a 3D towed streamer survey shot in West Africa for TotalFinaElf. The examples demonstrate that the method requires only minor human intervention and rapidly converges to a geologically plausible velocity model in these two very different and complex velocity regimes. The quality of the velocity models is verified by prestack depth migration results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3