A comparison between Gauss-Newton and Markov-chain Monte Carlo–based methods for inverting spectral induced-polarization data for Cole-Cole parameters

Author:

Chen Jinsong12,Kemna Andreas12,Hubbard Susan S.12

Affiliation:

1. Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, California, U.S.A. .

2. Formerly Agrosphere (ICG-4), Forschungszentrum Jülich, Germany; presently University of Bonn, Department of Geodynamics and Geophysics, Bonn, Germany. .

Abstract

We have developed a Bayesian model to invert spectral induced-polarization (SIP) data for Cole-Cole parameters using Markov-chain Monte Carlo (MCMC) sampling methods. We compared the performance of the MCMC-based stochastic method with an iterative Gauss-Newton-based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton-based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information often is inaccurate or insufficient. In contrast, the MCMC-based inversion method provides extensive globalinformation on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. In addition, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC-based method does not explicitly offer a single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can be used first to obtain the medians of unknown parameters by starting from an arbitrary set of initial values. The deterministic method then can be initiated using the medians as starting values to obtain the optimal estimates of the Cole-Cole parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3