A scalable deep learning platform for identifying geologic features from seismic attributes

Author:

Huang Lei1,Dong Xishuang2,Clee T. Edward3

Affiliation:

1. Prairie View A&M University, Department of Computer Science.

2. Prairie View A&M University, Department of Electrical and Computer Engineering.

3. TEC Applications Analysis.

Abstract

The modern requirement for analyzing and interpreting ever-larger volumes of seismic data to identify prospective hydrocarbon prospects within stringent time deadlines represents an ongoing challenge in petroleum exploration. To provide a computer-based aid in addressing this challenge, we have developed a “big data” platform to facilitate the work of geophysicists in interpreting and analyzing large volumes of seismic data with scalable performance. We have constructed this platform on a modern distributed-memory infrastructure, providing a customized seismic analytics software development toolkit, and a Web-based graphical workflow interface along with a remote 3D visualization capability. These support the management of seismic data volumes, attributes processing, seismic analytics model development, workflow execution, and 3D volume visualization on a scalable, distributed computing platform. Early experiences show that computationally demanding deep learning methods such as convolutional neural networks (CNN) provide improved results over traditional methods such as support vector machines (SVMs) and logistic regression for identifying geologic faults in 3D seismic volumes. Our experiments show encouraging accuracy in identifying faults by combining CNN and traditional machine learning models with a variety of seismic attributes, and the platform is able to deliver scalable performance.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3