Elastic moduli of dry and water-saturated carbonates — Effect of depositional texture, porosity, and permeability

Author:

Fabricius Ida L.123,Bächle Gregor T.123,Eberli Gregor P.123

Affiliation:

1. Technical University of Denmark, Department of Environmental Engineering, Kgs. Lyngby, Denmark. .

2. Formerly University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, U.S.A; presently ExxonMobil Upstream Research Company, Houston, Texas, U.S.A. .

3. University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, U.S.A. .

Abstract

Elastic moduli of water-saturated sedimentary rocks are in some cases different from moduli derived using Gassmann fluid substitution on data for rocks in the dry state. To address this discrepancy, we use a data set representing 115 carbonate samples from different depositional settings and a wide range of porosity and permeability. Depositional texture is reflected in the effect of water on elastic moduli and in the porosity-permeability relationship. Depositional texture is taken into account when porosity and permeability are combined in the effective specific surface of pores, which is related for a given pore fluid to the reference frequency as defined by Biot. For a given frequency of elastic waves, we obtain Biot’s frequency ratio between measured ultrasonic wave frequency and Biot reference frequency. For mostsamples with a frequency ratio above 10, elastic moduli in the water-saturated case are higher than predicted from elastic moduli in the dry case by Gassmann fluid substitution. This stiffening effect of water in some cases may be described by Biot’s high-frequency model, although in heterogeneous samples, a squirt mechanism is more probable. For data representing frequency ratios of 0.01 to 1, Gassmann fluid substitution works well. For samples with frequency ratios below 0.001, elastic moduli in the water-saturated case are lower than would be expected according to Gassmann’s equations or to Biot’s theory. This water-softening effect becomes stronger with decreasing frequency ratio. Water softening or stiffening of elastic moduli may be addressed by effective-medium modeling. In this study, we used the isoframe model to quantify water softening as a function of frequency ratio.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3