Affiliation:
1. Stanford Exploration Project, Stanford University, Stanford, CA 94305
Abstract
I present a semirecursive Kirchhoff migration algorithm that is capable of obtaining accurate images of complex structures by combining wave‐equation datuming and Kirchhoff migration. The method is successful because breaking up the complex velocity structure into small depth regions allows traveltimes to be calculated in regions where the computation is well‐behaved and where the computation corresponds to energetic arrivals. The traveltimes computed in such a region are used first for imaging and second for downward continuation of the entire survey (shots and receivers) to the boundary of the next region. This process results in images comparable to those obtained by shot‐profile migration, but at reduced computational cost. Because traveltimes are computed for small depth domains, the adverse effects of caustics, headwaves, and multiple arrivals do not develop. In principle, this method requires only the same number of traveltime calculations as a standard migration. Tests on the Marmousi data set produce excellent results.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献