Reflection moveout inversion for horizontal transverse isotropy: Accuracy, limitation, and acquisition

Author:

Al‐Dajani Abdulfattah1,Alkhalifah Tariq2

Affiliation:

1. MIT Earth Resources Lab, 42 Carleton St., Bldg. E34, Cambridge, Massachusetts 02142

2. Stanford Exploration Project, Stanford Univ., Stanford, California 94305

Abstract

Horizontal transverse isotropy (HTI) is the simplest azimuthally anisotropic model used to describe vertical fracturing in an isotropic matrix. Assuming that the subsurface is laterally homogeneous, and using the elliptical variation of P-wave NMO velocity with azimuth measured in at least three different source‐to‐receiver orientations, we can estimate three key parameters of HTI media: the vertical velocity, anisotropy, and the azimuth of the symmetry axis. Such parameter estimation is sensitive to the angular separation between the survey lines in 2-D acquisition or, equivalently, to source‐to‐receiver azimuths in 3-D acquisition and the set of azimuths used in the inversion procedure. The accuracy in estimating the azimuth, in particular, is also sensitive to the strength of anisotropy, while the accuracy in resolving vertical velocity and anisotropy is about the same for any strength of anisotropy. To maximize the accuracy and stability in parameter estimation, it is best to have the azimuths for the source‐to‐receiver directions 60° apart when only three directions are used. This requirement is feasible in land seismic data acquisition where wide azimuthal coverage can be designed. In marine streamer acquisition, however, the azimuthal data coverage is limited. Multiple survey directions are necessary to achieve such wide azimuthal coverage in streamer surveys. To perform the inversion using three azimuth directions, 60° apart, an HTI layer overlain by an azimuthally isotropic overburden should have a time thickness, relative to the total time, of at least the ratio of the error in the NMO (stacking) velocity to the interval anisotropy strength of the HTI layer. Having more than three source‐to‐receiver azimuths (e.g., full azimuthal coverage), however, provides a useful data redundancy that enhances the quality of the estimates, thus allowing acceptable parameter estimation at smaller relative thicknesses.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3