COARSE GRID CALCULATIONS OF WAVES IN INHOMOGENEOUS MEDIA WITH APPLICATION TO DELINEATION OF COMPLICATED SEISMIC STRUCTURE

Author:

Claerbout Jon F.1

Affiliation:

1. Geophysics Department, Stanford University, Stanford, California

Abstract

The multidimensional scalar wave equation at a single frequency is split into two equations. One controls the downgoing transmitted wave; the other controls the upcoming reflected wave. The equations are coupled, but in many reflection seismology situations the transmitted wave may be calculated without consideration of the reflected wave. The reflected wave is then calculated from the transmitted wave and the assumed velocity field. The waves are described by a modulation on up‐ or downgoing plane waves. This modulation function is calculated by difference equations on a grid. Despite complicated velocity models (steep faults, buried focus, etc.), the grid may be quite coarse if waves of interest do not propagate at large angles from the vertical. A one‐dimensional grid may be used for a two‐dimensional velocity model. With approximations, a point source emitting waves spreading in three dimensions may be included on the one‐dimensional grid. Calculation time for representative models is a few seconds. Phenomena displayed are interference, spherical spreading, propagation through focus, refraction, and diffraction. Converted waves are neglected. A procedure is suggested for the construction of a depth map of reflectors from observations at the surface. Assuming a velocity model, we may integrate the downgoing wave away from a surface source. Likewise, the upcoming wave may be approximately integrated back down into the earth. Since reflection coefficients are real, the ratio of upcoming to downgoing waves tends to be real at a reflector. An example is given in two dimensions which shows that this ratio over a dipping bed gives the dip correctly independent of source/receiver‐group offset.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3