ULTRASONIC SHEAR‐WAVE VELOCITIES IN ROCKS SUBJECTED TO SIMULATED OVERBURDEN PRESSURE

Author:

King M. S.1,Fatt I.1

Affiliation:

1. Department of Mineral Technology, University of California, Berkeley, California

Abstract

Ultrasonic equipment has been developed to measure shear‐wave velocities in small rock samples at hydrostatic pressures up to 2,400 psi. Under certain optimum conditions dilatational wave velocities can also be determined. The method employs a beam of ultrasonic energy passing through a liquid in which a quarter‐inch‐thick parallel‐sided sample of rock is rotated. From the laws of classical optics for the refraction and reflection of waves at boundaries between dissimilar media and the known velocity of sound in the liquid, the velocities in the sample may be calculated from a record of ultrasonic energy transmitted through the sample as a function of angle between the sample and the ultrasonic beam. Results obtained with this apparatus from samples of materials for which the velocity of waves has been published show good agreement with the latter. The variation of the velocity of shear waves in dry rocks with applied hydrostatic pressures up to 2,400 psi have been measured for seven sandstones, a chalk, and a limestone. The shear‐wave velocities were found to increase with an increase of the applied pressure. For five of the sandstones the increase in velocity at high pressures approached the one‐sixth power of the applied hydrostatic pressure predicted theoretically for a sphere pack model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3