Nonlinear inversion, statistical mechanics, and residual statics estimation

Author:

Rothman Daniel H.1

Affiliation:

1. Department of Geophysics, Stanford University, Stanford, CA 94305

Abstract

Nonlinear inverse problems are usually solved with linearized techniques that depend strongly on the accuracy of initial estimates of the model parameters. With linearization, objective functions can be minimized efficiently, but the risk of local rather than global optimization can be severe. I address the problem confronted in nonlinear inversion when no good initial guess of the model parameters can be made. The fully nonlinear approach presented is rooted in statistical mechanics. Although a large nonlinear problem might appear computationally intractable without linearization, reformulation of the same problem into smaller, interdependent parts can lead to tractable computation while preserving nonlinearities. I formulate inversion as a problem of Bayesian estimation, in which the prior probability distribution is the Gibbs distribution of statistical mechanics. Solutions are then obtained by maximizing the posterior probability of the model parameters. Optimization is performed with a Monte Carlo technique that was originally introduced to simulate the statistical mechanics of systems in equilibrium. The technique is applied to residual statics estimation when statics are unusually large and data are contaminated by noise. Poorly picked correlations (“cycle skips” or “leg jumps”) appear as local minima of the objective function, but global optimization is successfully performed. Further applications to deconvolution and velocity estimation are proposed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3