A recipe for practical full-waveform inversion in anisotropic media: An analytical parameter resolution study

Author:

Alkhalifah Tariq1,Plessix René-Édouard2

Affiliation:

1. KACST, Astronomy and Geophysical Research Institute, Riyadh, Saudi Arabia..

2. Shell, Rijswijk, Netherlands..

Abstract

In multiparameter full-waveform inversion (FWI) and specifically one describing the anisotropic behavior of the medium, it is essential that we have an understanding of the parameter resolution possibilities and limits. Because the imaging kernel is at the heart of the inversion engine (the model update), we drew our development and choice of parameters from what we have experienced in imaging seismic data in anisotropic media. In representing the most common (first-order influence and gravity induced) acoustic anisotropy, specifically, a transversely isotropic medium with a vertical symmetry direction (VTI), with the [Formula: see text]-wave normal moveout velocity, anisotropy parameters [Formula: see text], and [Formula: see text], we obtained a perturbation radiation pattern that has limited trade-off between the parameters. Because [Formula: see text] is weakly resolvable from the kinematics of [Formula: see text]-wave propagation, we can use it to play the role that density plays in improving the data fit for an imperfect physical model that ignores the elastic nature of the earth. An FWI scheme that starts from diving waves would benefit from representing the acoustic VTI model with the [Formula: see text]-wave horizontal velocity, [Formula: see text], and [Formula: see text]. In this representation, the diving waves will help us first resolve the horizontal velocity and then reflections, if the nonlinearity is properly handled, could help us resolve [Formula: see text], and [Formula: see text] could help improve the amplitude fit (instead of the density). The model update wavenumber for acoustic anisotropic FWI is very similar to that for the isotropic case, which is mainly dependent on the scattering angle and frequency.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3