GPU accelerated sparse curvelet-constrained wavefield reconstruction inversion with source estimation: Application to Chevron Benchmark 2014 blind test data set

Author:

Fang Zhilong1ORCID,Wang Hua2ORCID

Affiliation:

1. University of Electronic Science and Technology of China, School of Resources and Environment, Chengdu, China.

2. University of Electronic Science and Technology of China, School of Resources and Environment, Chengdu, China. (corresponding author)

Abstract

Full-waveform inversion (FWI) is a pivotal tool in seismic exploration and seismology but encounters a persistent challenge known as “cycle-skipping,” causing it to frequently converge to local minima. Wavefield reconstruction inversion (WRI) has emerged as a potential solution to mitigate the risk of cycle skipping. Researchers have provided numerical examples indicating that WRI is less prone to being ensnared in local minima caused by the absence of low-frequency component data and the absence of a well-defined initial model compared with conventional FWI. Despite its potential, the computational demands of WRI have hindered its widespread application, especially in scenarios involving ocean towed streamer seismic acquisition and unknown sources, where the augmented systems differ from source to source. In our study, we introduce a novel approach — sparse curvelet-constrained WRI with source estimation (WRI-SE-CC) — accelerated by graphics processing unit (GPU). Real-time source function estimation is achieved through the variable projection method, and noise-related artifacts are suppressed using sparse curvelet constraints. By optimizing the utilization of hundreds of computation processors within a GPU for parallel computing of matrix-vector multiplications, we present a GPU-based grouped conjugate gradient method to accelerate the computation of WRI-SE-CC. Numerical experiments demonstrate a significant 240-fold acceleration compared with the preconditioned conjugate gradient using one CPU core for computations involving multiple sources. Inversion experiments with the overthrust model demonstrate the capability of our method in mitigating local minima and suppressing noise-related artifacts. Furthermore, we validate the framework on the Chevron 2014 blind test data set, showcasing its effectiveness in addressing practical challenges in the field.

Funder

National Natural Science Foundation of China

Project of Basic Scientific Research Operating Expenses of Central Universities

Chengdu International Scientific Reserach Cooperation Project

Supporting Program for Outstanding Talent of the University of Electronic Science and Technology of China

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3