Combined onshore and offshore wide-scale seismic data acquisition and imaging for carbon capture and storage exploration in Havnsø, Denmark

Author:

Zappalá Samuel1ORCID,Malehmir Alireza2ORCID,Papadopoulou Myrto2ORCID,Gregersen Ulrik3ORCID,Funck Thomas3ORCID,Clausen Ole R.4ORCID,Nørmark Egon4ORCID

Affiliation:

1. Uppsala University, Department of Earth Sciences, Uppsala, Sweden. (corresponding author)

2. Uppsala University, Department of Earth Sciences, Uppsala, Sweden.

3. Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark.

4. Aarhus University, Department of Geoscience, Aarhus, Denmark.

Abstract

Strong global actions for climate change include carbon capture and storage (CCS) as a feasible solution to reach carbon neutrality and raise opportunities for detailed subsurface investigations. An acquisition set-up designed for onshore-offshore zones was maximized for wide-scale high-resolution structural imaging and implemented to cover a domal structure of interest for CCS utilization close to the town of Havnsø (Denmark). The challenges of the combined acquisition and processing of land and marine multisensor data along a 42 km seismic profile are analyzed, the suggested solutions are applied, and the limitations are discussed. On the onshore side, a nodal array and a seismic landstreamer system were simultaneously used, whereas along the transition zone, a marine seismic streamer and ocean-bottom seismometers were added to record the seismic response generated by two seismic vibrator sources. The adopted sensing domains (velocity, acceleration, and pressure) were studied, and different processing steps were evaluated to enable their processing and subsequent data set merging. Results suggest, as the best approach, a separate prestack processing of the different data sets and the computation of new geometries and new surface-consistent residual static correction after their merging. The data acquired in the transition zone illuminate, for the first time, the subsurface geology of the region, delineating an expected domal closure. The final seismic section shows high continuity of the reflections with good resolution along the entire profile, identifying the main reservoir structure and the surrounding areas, which are important to ensure reservoir integrity and safe exploitation over longer time scales. Shallow and deep reflections are consistent with the stratigraphic column from a well log near the profile. The presented study shows a comprehensive workflow for processing such a multisensor data set in onshore and transition zone settings.

Funder

Nationale Geologiske Undersøgelser for Danmark og Grønland

Publisher

Society of Exploration Geophysicists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3