Continuous seismic monitoring of hydraulic fracturing reveals complex subsurface dynamics: observations using distributed acoustic sensing and surface orbital vibrators

Author:

Correa Julia1,Glubokovskikh Stanislav1,Nayak Avinash1,Luo Linqing1,Wood Todd1,Zhu Xiaoyu2,Ajo-Franklin Jonathan3,Freifeld Barry4

Affiliation:

1. Lawrence Berkeley National Laboratory, Energy Geosciences Division, Earth & Environmental Sciences Area, Berkeley, California, USA..

2. Rice University, Department of Earth, Environmental & Planetary Sciences, Houston, Texas, USA..

3. Rice University, Department of Earth, Environmental & Planetary Sciences, Houston, Texas, USA and Lawrence Berkeley National Laboratory, Berkeley, California, USA..

4. Class VI Solutions, Oakland, California, USA..

Abstract

Understanding hydraulic fracturing is crucial to improving the stimulation of unconventional reservoirs and increasing fluid production. This study proposes a novel seismic monitoring technology, using distributed acoustic sensing (DAS) and surface orbital vibrators (SOV), to capture fracture seismic response and mechanical properties at high temporal intervals. We analyze continuous time-lapse Vertical Seismic Profiling (VSP) data acquired every hour during the first nine days of treatment of an unconventional reservoir in the Austin Chalk/Eagle Ford Shale Laboratory. The VSP data contains clear seismic signals scattered from the activated fractures. The spatiotemporal changes of the fracture reflectivity revealed by the SOV/DAS data correlate well with the observations of fracture locations inferred from low-frequency DAS data. These results capture the fracture opening and closure processes, as well as highlighting potential pre-stage activations of the fractures due to hydraulic connectivity with pre-existing fracture systems. Therefore, analysis of the presented data set provides a unique opportunity to understand fracture initiation and subsequent evolution, not only in the context of unconventional resources, but also in enhanced geothermal systems.

Publisher

Society of Exploration Geophysicists

Reference3 articles.

1. Binder, G., Titov, A., Liu, Y., Simmons, J., Tura, A., Byerley, G. & Monk, D., 2020. Modeling the seismic response of individual hydraulic fracturing stages observed in a time-lapse distributed acoustic sensing vertical seismic profiling survey. Geophysics, 85(4). https://doi.org/10.1190/geo2019-0819.1

2. Birkholzer, J. T., J. Morris, J. R. Bargar, F. Brondolo, A. Cihan, D. Crandall, H. Deng, W. Fan, W. Fu, P. Fu, and et al. 2021. A New Modeling Framework for Multi-Scale Simulation of Hydraulic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3