Decellularized extracellular matrix for three-dimensional bioprinted in vitro disease modeling

Author:

Bae Mihyeon,Kim Joeng Ju,Kim Jongmin,Cho Dong-Woo

Abstract

Precise in vitro models in tissue engineering have attracted the attention of researchers seeking to understand physiological consequences from native tissues as well as the mechanism of diseases in vitro. To construct delicate native tissue-like in vitro models, a proper combination of biomimetic materials and a biofabrication strategy is required. Conventional biomaterials, such as collagens, laminins, and synthetic polymers, have been widely adapted in tissue recapitulation; however, they lack tissue specificity in the context of biophysical properties and native-like extracellular matrix composition. The lack of tissue specificity accounts for the pathophysiological discrepancy between preclinical model and actual human patient. Thus, biomaterials should be improved for attaining physiological similarity between disease models and patients. Additionally, a biofabrication technique is essential for building mature cellular or tissue structures with a sophisticated bioassembly process. Among the biofabrication techniques, bioprinting stands as a promising approach for constructing three-dimensional (3D) cellular structures using specific cell types and biomaterials. Combining multifunctional bioinks and bioprinting is expected to enhance tissue specificity with regard to structural recapitulation. From this viewpoint, decellularized extracellular matrix (dECM) bioink has been increasingly used to achieve tissue specificity and manufacturability in 3D bioprinting. Progress in this domain requires the clarification of tissue-specific decellularization method and the development of a proper 3D bioprinting method, in conjunction with the improvement of the compatibility between dECM and bioprinting. In this review, we introduce the production methods and characteristics of dECM in the context of tissue specificity and examine state-of-the-art dECM-incorporated 3D-bioprinted in vitro models for disease investigation. We also recommend a strategy for improving dECM for use in therapeutic studies based on simulations of the pathophysiological microenvironment.

Publisher

AccScience Publishing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3