Uncovering advances in final end-user applications, user acceptability, quality assurance, and digital technologies for 3D-printed oral drug delivery systems

Author:

L. Rios-Mata Veronica,Rodriguez-Salvador Marisela,An Jia,Kai Chua Chee,F. Castillo-Valdez Pedro

Abstract

The increasing demand for innovative drugs and personalized treatment is radically changing the pharmaceutical industry, where significant efforts in research and development (R&D) are taking place. Three-dimensional (3D) printing offers interesting solutions for these demands, solving some of the limitations of current manufacturing processes. 3D-printed oral drug delivery systems can improve the delivery of pharmaceutical substances in the body, and the dynamic interaction between pharmaceutical ingredients, while providing personalized formulations, geometries, sizes, controlled release rates, and increasing time in the gastrointestinal tract. Advances in 3D printing for oral drug delivery systems have been investigated in terms of processes, materials, and effects. However, it is important to also consider other topics, such as the specific needs of the users to enhance drugs acceptability, the quality control processes due to the absence of approved guidelines, and the digitalization of the industry to respond to future challenges of the digital era; nevertheless, there are no studies that comprise these elements. To fill this gap, the aim of this research is to identify advances in terms of final end-user applications, quality assurance, user acceptability, and digital technologies for 3D-printed oral drug delivery systems. To accomplish this, a competitive technology intelligence (CTI) methodology was applied, where scientific literature was retrieved from the Web of Science covering the period from January 1, 1900, to May 1, 2023. For this task, a scientometric analysis was performed, and the main trends involving the previously mentioned elements were identified. In the first case, 3D-printed oral drug delivery systems are being designed for different purposes, including as anti-deterrent formulations to decrease the global problem of opioid abuse. For quality assurance, the results demonstrated the implementation of approaches like quality by design to increase the quality of the 3D-printed dosage forms. In the case of user acceptability, the interest in creating more attractive formulations was identified; for this, innovative technologies such as ColorJet 3D printing are being used. Lastly, regarding digital technologies, the importance of cyberattacks while sending the 3D-printed dosage form file to the 3D printer is highlighted; for this, cybersecurity systems are being studied. The outcomes of this study can add value to researchers, organizations, and investment firms interested in the R&D of novel and personalized treatments, and the areas of 3D printing, pharmaceutical, medical, and health.    

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3