Optimizing additively manufactured mouthguards: An evaluation of multi-layer materials for improved shock absorption and durability compared to conventionally fabricated samples

Author:

Li Chenyuan,Wada Takahiro,Tsuchida Yumi,Hayashi Kairi,Tanabe Gen,Ueno Toshiaki,Churei Hiroshi

Abstract

Although sports mouthguards (MGs) are mandatory in some contact sports, the use of conventional fabricated materials for making MGs is time-consuming and lacks precision, limiting their widespread application. In this study, we compared mouthguards designed using digital software with conventional ones. The conventional mouthguards were categorized into two types: those constructed from a poly-(ethylene vinyl acetate)-base material, and those constructed from MG21, a polyolefin-base material. The shock absorption and durability were assessed through a free-falling steel ball test and a fatigue test. The durability of the MGs was evaluated by measuring the retention force in the inner layer and deviations at consistent points on the outer layer during various fatigue test stages. Additively manufactured samples showed superior shock absorption performance, except for the double-layer samples with an inner layer of Shore A hardness 95. All single-layer additively manufactured MGs were damaged during the mid-fatigue test stage, while both double-layer additively manufactured and conventional MGs remained undamaged. Throughout all fatigue test stages, the retention force of double-layer additively manufactured MGs was significantly lower than that of conventional MGs. However, the retention force of double-layer additively manufactured samples with an inner layer of Shore A hardness 70 (D-A70) was superior to the average of all MGs in the wet condition, which was 6.4 ± 2.5 N in the previous study. The results of this study demonstrated the benefits of a hybrid design of hard and soft materials, particularly the promising combination of D-A70, which exhibited comparable shock absorption and durability to conventional MGs.

Publisher

AccScience Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3