Frequency response analysis and in vitro verification of 3D-printed ossicular replacement materials

Author:

Hao Jingbin,Zhu Yin,Shen Ding,Rahman Md Thowfiqure,Kou Yinxin,Liu Houguang

Abstract

As a bridge that transmits airborne sound signals to the auditory receptors of the inner ear, the eardrum and ossicular chain of the middle ear convert sound through two types of conversions: gas–solid (airborne sound signal–eardrum and ossicular chain) and solid–liquid (eardrum and ossicular chain–internal and external lymphatic fluid in the cochlea). This process concentrates and amplifies the sound to the inner ear through the lever principle structure formed by the three ossicles. However, diseases, hereditary factors, or trauma can reduce the sound transmission function of the middle ear. The effectiveness of middle ear replacement prostheses depends on their vibration response to the human auditory perception frequency, from the eardrum to the stapes plate. This response is influenced by the materials, geometry, and design of the replacement prosthesis and eardrum. This study explores the effects of different materials on hearing after artificial ossicular replacement. Usually, human temporal bone models are used for testing and validating numerical results. However, obtaining specimens from living humans is not always feasible. Therefore, we used three-dimensional printing technology to build a model of the middle ear to test the ossicular bone. Titanium alloy TC4, stainless steel 316L, and composite HA/PCL are chosen as materials for ossicular replacement. Using f‍inite element analysis and an in vitro verification experiment, individual replacements of the ossicles and three bone material replacements were conducted for frequency response analysis. The combination of the malleus made of TC4, the incus made of TC4, and the stapes made of HA/PCL were found to bear higher resemblance to a real normal ear ossicular model.

Publisher

AccScience Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3