3D-bioprinted cell-laden hydrogel with anti-inflammatory and anti-bacterial activities for tracheal cartilage regeneration and restoration

Author:

Wang Pengli,Wang Tao,Xu Yong,Song Nan,Zhang Xue

Abstract

Despite the notable advances in tissue-engineered tracheal cartilage (TETC), there remain several challenges that need to be addressed, such as uneven cell distribution for cartilage formation, customized C-shaped tracheal morphology, local inflammatory reactions, and infections. To overcome these challenges, this study proposed the addition of icariin (ICA) and chitosan (CS) into a gelatin methacryloyl (GelMA) hydrogel to develop a new ICA/CS/GelMA hydrogel with anti-inflammatory and anti-bacterial properties, and three-dimensional (3D)-bioprinting feasibility. The aim of this study was to construct a TETC, a customized C-shaped cartilage structure, with uniform chondrocyte distribution as well as anti-inflammatory and anti-bacterial functions. Our results confirmed that ICA/CS/GelMA hydrogel provides desirable rheological properties, suitable printability, favorable biocompatibility, and simulated microenvironments for chondrogenesis. Moreover, the addition of ICA stimulated chondrocyte proliferation, extracellular matrix synthesis, and anti-inflammatory ability, while the encapsulation of CS enhanced the hydrogels’ anti-bacterial ability. All these led to the formation of an enhanced TETC after submuscular implantation and an elevated survival rate of experimental rabbits after orthotopic tracheal transplantation. This study provides a reliable cell-laden hydrogel with anti-inflammatory and anti-bacterial activities, suitable printability, and significant advancements in in vivo cartilage regeneration and in situ tracheal cartilage restoration.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3