In silico Identification of Potential Inhibitor Targeting Streptococcus mutans and Lactobacillus Acidophilus for the Treatment of Dental Caries

Author:

Chittrarasu M.,Ahamed A. Shafie,Sivakumar A. Andamuthu

Abstract

Background: Dental caries is one of the most common chronic diseases, and it is caused by the acid fermentation of bacteria that have become attached to the teeth. Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus) anchor surface proteins to the cell wall and form a biofilm to aid adhesion to the tooth surface. Some natural plant products, particularly several flavonoids, are effective inhibitors. However, given the scarcity of inhibitors and the emergence of drug resistance, the development of new inhibitors is critical. The high-throughput virtual screening approach was used in this study to identify new potential inhibitor of against S. mutans and L. acidophilus by using ligand (Ellagic acid). Aim: To evaluate the drug interaction ligand (Ellagic acid) and protein [A3VP1 of AgI/II] of Streptococcus mutans (PDB ID: 3IPK), glucan-1,6 - alpha-glucosidase from Lactobacillus acidophilus NCFM (PDB ID: 4AIE). Materials and Methodology: The pdb format of two selected proteins was retrieved from the RCSB protein database. Then inhibitors were docked with protein (A3VP1 of AgI/II) and glucan-1,6-alpha-glucosidase to identify the potent inhibitor. An evaluation criterion was based on the binding affinities by using AutoDock. Results: The binding energy of Ellagic acid - Streptococcus mutans docked complex-10.63 kcal/mol and with Ellagic acid – Lactobacillus acidophilus docked complex was -7.30 kcal/mol. Conclusion: In this study, Showed that lesser binding energy better is the binding of the ligand and protein. These findings can provide a new strategy for dental caries disease therapy by using Ellagic acid as a inhibitor against  Streptococcus mutans and Lactobacillus acidophilus

Publisher

Sciencedomain International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3