Study of Naturally-derived Biomolecules as Therapeutics against SARS-CoV-2 Viral Spike Protein

Author:

Khanal Pitambar,Chawla Udeep,Praveen Shagufta,Malik Zeenat,Malik Sheeba,Yusuf MohdORCID,Khan Shafat Ahmad,Sharma Munesh

Abstract

The SARS-CoV2 virus, the causative agent for COVID-19 disease has to lead to more than 3.1 million deaths and crossed 146 million infections worldwide so far. Although vaccines development and emergency authorization has been approved by several governments, there has been great concern about its side effects for the long term and its effectiveness against new mutated strains. A resurgence of COVID-19 or related disease can be catastrophic. There is an urgent need to look for effective antiviral agents for many coronavirus strains with minimum side-effects, and maximum efficacy globally. Several, naturally-derived biomolecules have proved their excellent effect on several infectious diseases in a multi-mode fashion by targeting several pathways as well as increasing efficacy with high safety profile. Integrate computational prediction design was used in the study to examine the pharmacology of bioactive compounds of natural origin against SARS-CoV2 spike protein. Keeping these facts we have computationally examined 16 naturally occurring compounds using to evaluate their effectiveness against the SARS-CoV2 virus using the molecular docking technique. Hesperidin derivatives are known to ameliorate diabetes, co-morbidity for coronavirus, as well as help in preventing post coronavirus complications. We found the binding free energy of Hesperidin with spike protein to be -7.57 kcal/mol, the aglycone derivative to be -6.93 kcal/mol, hesperidin monoacetyl derivative to be -7.82 kcal/mol, and hesperidin pentaacetyl derivative to be -8.39 kcal/mol. Our findings revealed that acetylated derivatives of hesperidin showed significant improved remarked binding affinity while aglycone derivative hesperetin showed a decrease in binding affinity. Our studies give a new direction where natural bioactive compounds and their derivatives can be modulated and used after clinical trials to effectively inhibit coronavirus infection as well as diabetes simultaneously with a high safety profile.   Graphical Abstract

Publisher

Sciencedomain International

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3