Biochar, Bentonite and Potassium Humate Effects on Saline Soil Properties and Nitrogen Loss

Author:

Abdeen S. A.

Abstract

Aim: In order to study the effect of biochar, bentonite and potassium humate on saline soil characteristics, barley growth and nitrogen loss, a column experiment was conducted. Addition of the above mention materials was hypothesized to improve the characteristics of saline soil and decrease nitrogen loss in the leachate solution. Place and Duration of Study: Farm of Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt during the winter season of 2019. Methodology: Biochar and bentonite were added with rates 0, 5 and 10 g.kg-1; and the rates of potassium humate were 0, 5 and 10 mg.kg-1. Excess irrigations were implemented three times (on 12th, 24th, 36th days) during growing season. Leachate solution was collected after each excess irrigation from each column to determine nitrogen loss. Results: Main results show that total organic carbon and soil porosity were increased by increasing the addition rates of the studied materials, especially at the high rates of biochar and bentonite. Also, the availability of water significantly increased. Addition of biochar and bentonite gave the highest decreasing in leachate solution volume. Nitrogen loss was decreased significantly at the highest rates of the studied materials, where the decrement percentage in leachate solution reached at 36.07%, 35.82 and 23.81 at the highest rates of biochar, bentonite and potassium humate, respectively. That led to increasing the retention of available nitrogen in saline soil. Fresh and dry weights of barley plants were increased significantly by increasing the addition rates of all amended materials. Macronutrients (NPK) content and uptake were increased significantly by increasing the addition rates of the studied materials. Conclusion: Research results proved that changes in soil properties caused a significant increase in barley growth and nutrients uptake. Addition of biochar and bentonite were the best option for improving saline soil properties, barley growth and nutrients uptake and reduce nitrogen loss by improving nitrogen retention and decreasing the leachate volume.

Publisher

Sciencedomain International

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3