Structure-based design of small-molecule protein–protein interaction modulators: the story so far

Author:

Falchi Federico1,Caporuscio Fabiana2,Recanatini Maurizio3

Affiliation:

1. D3-Computation, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy

2. Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy.

3. Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Belmeloro, 6, 40126 Bologna, Italy

Abstract

As the pivotal role of protein–protein interactions in cell growth, transcriptional activity, intracellular trafficking, signal transduction and pathological conditions has been assessed, experimental and in silico strategies have been developed to design protein–protein interaction modulators. State-of-the-art structure-based design methods, mainly pharmacophore modeling and docking, which have succeeded in the identification of enzyme inhibitors, receptor agonists and antagonists, and new tools specifically conceived to target protein–protein interfaces (e.g., hot-spot and druggable pocket prediction methods) have been applied in the search for small-molecule protein–protein interaction modulators. Many successful applications of structure-based design approaches that, despite the challenge of targeting protein–protein interfaces with small molecules, have led to the identification of micromolar and submicromolar hits are reviewed here.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3