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Machine Learning Models for ASCVD Risk

Prediction in an Asian Population — How to

Validate the Model is Important
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Introduction: Atherosclerotic cardiovascular disease (ASCVD) is prevalent worldwide including Taiwan, however

widely accepted tools to assess the risk of ASCVD are lacking in Taiwan. Machine learning models are potentially

useful for risk evaluation. In this study we used two cohorts to test the feasibility of machine learning with transfer

learning for developing an ASCVD risk prediction model in Taiwan.

Methods: Two multi-center observational registry cohorts, T-SPARCLE and T-PPARCLE were used in this study. The

variables selected were based on European, U.S. and Asian guidelines. Both registries recorded the ASCVD outcomes

of the patients. Ten-fold validation and temporal validation methods were used to evaluate the performance of the

binary classification analysis [prediction of major adverse cardiovascular (CV) events in one year]. Time-to-event

analyses were also performed.

Results: In the binary classification analysis, eXtreme Gradient Boosting (XGBoost) and random forest had the best

performance, with areas under the receiver operating characteristic curve (AUC-ROC) of 0.72 (0.68-0.76) and 0.73

(0.69-0.77), respectively, although it was not significantly better than other models. Temporal validation was also

performed, and the data showed significant differences in the distribution of various features and event rate. The

AUC-ROC of XGBoost dropped to 0.66 (0.59-0.73), while that of random forest dropped to 0.69 (0.62-0.76) in the

temporal validation method, and the performance also became numerically worse than that of the logistic regression

model. In the time-to-event analysis, most models had a concordance index of around 0.70.

Conclusions: Machine learning models with appropriate transfer learning may be a useful tool for the development

of CV risk prediction models and may help improve patient care in the future.
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INTRODUCTION

Atherosclerotic cardiovascular disease (ASCVD) is

prevalent worldwide including Taiwan. Previous studies

have shown that there are epidemiological and drug re-

sponse differences between Asian and Western pati-

ents. Taiwan has an easily accessible health insurance

system that may lead to differences in cardiovascular

(CV) disease outcomes from other countries.
1,2

ASCVD

risk scoring is important for risk reduction strategies. U.S.,

European and Asian guidelines recommend the manage-

ment of ASCVD and metabolic risk factors based on CV

risk scoring.
3-7

However, widely accepted tools to assess

the risk of ASCVD are lacking in Taiwan.

Machine learning has been extensively used for de-

veloping prognostic models in healthcare. It has the ad-

vantage of analyzing complex data and relies less on

ever-changing medical knowledge. However, machine

learning models are often criticized as being difficult to

interpret and lacking reproducibility.
8

Transferring knowl-

edge from other cohorts or models and adjusting it ac-

cording to another cohort, a type of “transfer learning”,

is increasingly being used in medical classification prob-

lems.
9,10

In a broader definition, this also includes refer-

ring the concept and variables of other models and then

building a new model with our own data.

The purpose of this study was to test the feasibility

of machine learning with transfer learning for evaluating

ASCVD risk in Taiwan. We used both traditional statisti-

cal analysis and machine learning to develop risk predic-

tion models with two Taiwanese cohorts, and then vali-

dated the models in various ways.

METHOD

Participants’ demographics

The study population constituted the T-SPARCLE and

T-PPARCLE cohorts, which enrolled patients from 16 me-

dical centers in Taiwan. The cohorts included men and

women aged > 18 years who met the following criteria

(Figure 1): (a) with evidence of ASCVD, including (1) co-

ronary artery disease (CAD), evidenced by cardiac cathe-

terization examination, having a history of myocardial

infarction, or with angina showing ischemic electrocar-

diogram changes or positive response to stress test); (2)

cerebral vascular disease, cerebral infarction, intracere-

bral (excluding intracerebral hemorrhage associated with

other diseases); (3) transient ischemic attack with carotid

artery ultrasound confirming atheromatous changes with

more than 70% blockage; or (4) peripheral atherosclero-

sis (symptoms of ischemia confirmed by Doppler ultra-

sound or angiography); and (b) with no evidence of

ASCVD, but with at least one of the following risk fac-

tors: diabetes mellitus (DM), dyslipidemia, hypertension,

smoking, older age (men > 45 years old, women > 55 years

old), family history of premature CAD (men < 55 years

old, women < 65 years old), and obesity (waist circum-

ference: men > 90 cm, women > 80 cm). The patients

were defined as having dyslipidemia if one of the follow-

ing criteria were met: total cholesterol > 200 mg/dL; low-

density lipoprotein cholesterol (LDL-C) > 130 mg/dL; tri-

glyceride (TG) > 200 mg/dL; men with high-density lipo-

protein cholesterol (HDL-C) < 40 mg/dL or women with

HDL-C < 50 mg/dL, or receiving lipid-lowering therapy.

The exclusion criteria were as follows: patients with

neuro-cognitive or psychiatric conditions, end-stage renal

disease on dialysis, serious heart disease with functional

class III or IV heart failure, life expectancy shorter than 6
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Abbreviations

ACEi Angiotensin-converting enzyme inhibitor

ARB Angiotensin receptor blocker

ASCVD Atherosclerotic cardiovascular disease

AUC Area under the receiver operating characteristic

curve

BMI Body mass index

CAD Coronary artery disease

CI confidence interval

CRP C-reactive protein

CV Cardiovascular

DM Diabetes mellitus

eGFR Estimated glomerular filtration rate

HDL-C High-density lipoprotein cholesterol

LDL-C Low-density lipoprotein cholesterol

MACE Major adverse cardiovascular event

MLP Multilayer perceptron

PAOD Peripheral arterial occlusive disease

TG Triglyceride

XGBoost eXtreme Gradient Boosting



months, treatment with immunosuppressive agents. Pa-

tients with recent acute stroke, acute myocardial infarc-

tion, and those who underwent coronary revasculariza-

tion within 3 months were also excluded. The enrolled

patients were followed yearly, and those with a follow-

up time < 1 year but without a major adverse cardiovas-

cular event (MACE) were also excluded. Clinical out-

comes, adverse events, laboratory data and medication

use were recorded at enrolment and each follow-up.

Smoking status, physical activity, and other relevant clin-

ical information were also recorded.

Machine learning analytic framework

In this study, 22 clinical variables were recorded, in-

cluding age, sex, history of ASCVD, revascularization pro-

cedure (performed not for acute coronary syndrome),

peripheral arterial occlusive disease (PAOD), stroke,

smoking status, systolic blood pressure, congestive heart

failure, DM, renal function (estimated glomerular filtra-

tion rate), body mass index (BMI), lipid profiles (includ-

ing LDL-C, non-HDL-C, HDL-C, TG), and medication use

[statins, beta-blockers, angiotensin-converting enzyme

inhibitors (ACEis)/angiotensin receptor blockers (ARBs),

antiplatelets]. The variables were based on European,

U.S. and Asian guidelines and studies considered to be

important for the risk stratification of ASCVD or man-

agement.
4,5,11,12

We proposed two approaches with ma-

chine learning and deep learning framework to evaluate

the clinical outcomes. First, the patients were defined

to have events if they had a MACE within 1 year; other-

wise, they were defined as having no events. Binary clas-

sification with four different algorithms [logistic regres-

sion, eXtreme Gradient Boosting (XGBoost), multilayer

perceptron (MLP), and random forest] were constructed

to classify the patients into those with and without MACEs

in 1 year. Second, to predict MACEs during follow-up, two

survival analyses (Cox proportional hazards regression

and DeepHit) were conducted (Figure 2).

Binary classification

Logistic regression was performed for the linear an-

alysis in the binary classification method. Other non-lin-

ear models were as follows:

XGBoost: a tree-based, efficient, non-linear model that

is capable of handling missing data. It is an ensemble

method that uses gradient boosting for optimization. It
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Figure 1. Data processing and model flow. ASCVD, atherosclerotic cardiovascular disease; MACE, major adverse cardiovascular event.



has been shown in prior studies to yield state of the art

performance.
13

MLP: a neural network-based model that has one

extra multiple hidden layer between the input and out-

put layer. Neurons constitute each hidden layer, and

each layer is connected with weight coefficients which

are updated during the training process. The loss func-

tion is cross-entropy.
14

Random forest: an estimator consisting of a combi-

nation of tree classifiers where each classifier is gener-

ated using different random subsamples of input. It is

also an ensemble method.
15

In each of these models, ten-fold cross-validation

was performed and the average performance score was

presented (Figure 3). Feature importance was displayed

using a permutation method after repeating 1000

times.
16

In an additional temporal validation method,

70% of the data were used for training (model develop-

ment) and 30% were used for testing according to the

time of enrollment. The early group was used for train-

ing, and the late group was used for testing. Ten-fold

validation and model development were performed in

the training set (n = 7362), and then validated in the test

set (n = 3145) (Figure 4a).

Time-to-event survival analysis

In the time-to-event analysis, data were randomly

split into 70% for training and 30% for testing. In the

training set, 70% was used for model development, and

the remaining 30% was used for model tuning and selec-

tion (Figure 4b).

Cox proportional hazards regression was performed

for linear analysis of the time-to-event survival analysis.

The loss function was Cox’s partial likelihood. Other non-

linear models were as follows:

DeepHit: a deep neural-network based model that

can learn survival time. The model does not rely on pa-

rametric assumptions of survival. The loss function is a

combination of a negative log-likelihood and a ranking

loss.
17

Gradient boosted survival model: an ensemble tree-
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Figure 2. Example of binary classification and time-to-event survival

analysis.

Figure 3. Process of 10-fold validation. Figure 4. Process of 70%-30% train-test splitting.



based method that uses a gradient boost method to op-

timize loss function in time-to-event analysis. The loss

function used here is also Cox’s partial likelihood.
18

SMART score

SMART score, a Dutch scoring system, was used to

compare with the models developed in this study. Mo-

del A in the original study was chosen, and variables in-

cluded age, sex, smoking, systolic blood pressure, DM,

CAD, cerebrovascular disease, PAOD, HDL-C, total cho-

lesterol, and eGFR; while C-reactive protein (CRP), ab-

dominal aneurysm and timing of vascular disease were

omitted in the study due to a lack of data in our cohort.
19

For the binary outcome analytic model, performance

was measured according to area under the receiver op-

erating characteristic (ROC) curve (AUC). The average

precision score was also calculated, which is the AUC of

precision (also called positive predictive value) recall (also

called sensitivity) curve. For the time-to-event model,

the performance was measured using the concordance

index.

All analyses were performed using SAS 9.4 software

(SAS Institute Inc., Cary, NC) and in Python (version

3.3.4) using open-source libraries (Matplotlib [version

3.6.9], XGBoost [version 1.5.1]).

Statistical analysis

Categorical variables are presented as percentage,

and continuous or discrete variables are presented as

mean � standard deviation. The chi-square test was used

to compare proportions, and the Student’s t-test was

used to compare differences in continuous variables be-

tween groups.

A Cox regression model was used to estimate hazard

ratios and 95% confidence intervals (CIs) for MACE out-

comes among CV risk groups, and evaluate the residual

risk related to lipid profiles. Missing data were imputed

with their means. The CIs of AUCs were calculated assum-

ing exponential distribution of positive and negative

cases,
20

while that of the concordance index was ob-

tained from bootstrapping of the testing data.

RESULTS

After splitting the data according to the time of en-

rollment, those enrolled by April 8, 2013 were classified

into the early group (n = 7362), while those enrolled af-

ter April 8, 2013 were classified into the late group (n =

3145). The baseline characteristics are listed in Table 1.

Compared to the early group, the late group had higher

event rates, more male patients, older age, higher BMI,

higher eGFR, lower rate of stroke, lower rate of myocar-

dial infarction, more ASCVD, more coronary revasculari-

zations (not for ACS), lower systolic blood pressure, lower

HDL-C, higher TG, and less frequent use of ARBs/ACEIs.

Compared to those without MACEs within 1 year, those

with MACEs within 1 year were older, had lower eGFR,

and were more likely to have DM, ASCVD, stroke, PAOD,

myocardial infarction, heart failure and to use antiplate-

lets. Pearson correlation coefficients between the vari-

ables are provided in Supplementary Table 1.

For the binary classification methods, when the whole

group was used for ten-fold cross-validation, XGBoost

and random forest had numerically higher ROC-AUC va-

lues [0.72 (0.68-0.76), 0.73 (0.69-0.77), respectively]

and higher average precision [0.18 (0.13-0.23), 0.17

(0.12-0.22), respectively]. All models had substantial

overlap in CI (Figure 5). The SMART score had an ROC-

AUC of 0.70 (0.66-0.74), and average precision of 0.04

(0.01-0.07). In the logistic regression model, the five

most important features were PAOD, DM, TG, heart fail-

ure, and ASCVD; those in the XGBoost model were eGFR,

age, ASCVD, BMI, and DM; those in the MLP model were

age, systolic blood pressure, revascularization, DM, and

ARB/ACEi use; and those in the random forest were age,

eGFR, ASCVD, BMI, and HDL.

For the temporal validation methods, XGBoost had

the best performance in the training set (early group),

with an ROC-AUC of 0.73 (0.68-0.78), while the perfor-

mance dropped to 0.66 (0.59-0.73) in the test set (late

group). Similarly, random forest had a performance of

0.72 (0.66-0.78) in the training set, and 0.69 (0.62-0.76)

in the test set. In contrast, both the logistic regression

and MLP models had slightly better performance for the

test set than that for the training set (Table 2).

For the time-to-event analyses, the Cox regression

model had a concordance index of 0.69 in the training

set, and 0.70 in the test set. The DeepHit model had a

concordance index of 0.65 in both the training and test

sets. The gradient boost survival model had a concor-

dance index of 0.70 in both the training and test sets.
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The SMART score was validated on the whole data set,

and had a concordance index of 0.69 (Table 3).

DISCUSSION

In this study, we demonstrated that machine learn-

ing is a potentially useful tool for developing a cardio-

vascular risk scoring system in Taiwan. We also presented

the results of various validation methods to ensure the

reproducibility of the models with two clinical cohorts

(Central Illustration).

Different approaches to predict cardiovascular out-

comes yielded similar performance in this study. Both

binary classification and time-to-event analyses had AUCs

or concordance indices of around 0.7. The performance

was similar to that of the traditional Framingham score

endorsed by the AHA but numerically inferior to that of
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Figure 5. Comparing performance between models. In each receiver

operating characteristic (ROC)-area under the curve (AUC) figure, color

lines represent performances of 10 different validation process, while

the central blue line is the performance of the final model. MLP, multil-

ayer perceptron; XGBoost, eXtreme Gradient Boosting.

Table 1. Baseline characteristics of the patients

Early group

(N = 7362, by

2013/4/8)

Late group

(N = 3145, after

2013/4/8)

p value
No MACE within 1 year

(N = 10411)

MACE within 1 year

(N = 96)
p value

Age 064.6 � 11.9 063.3 � 12.0 < 0.001 < 64.2 � 11 69.4 � 12.7 < 0.001 <

Male sex (%) 4538 (61.6) 2126 (67.6) < 0.001 < 6602 (63.4) 62 (64.6) 0.813

ASCVD (%) 3995 (54.3) 1739 (55.3) 0.332 5656 (54.3) 78 (81.3) < 0.001 <

Revascularization

(not for ACS)

080 (1.1) 0349 (11.1) < 0.001 < 423 (4.1) 6 (6.3) 0.281

Unstable angina 071 (1.0) 106 (3.4) < 0.001 < 174 (1.7) 3 (3.1) 0.270

Stroke 0865 (11.7) 211 (6.7) < 0.001 < 1056 (10.1) 20 (20.8) 0.001

PAOD 108 (1.5) 028 (0.9) 0.020 130 (1.2) 6 (6.3) < 0.001 <

Myocardial

infarction

2890 (39.3) 1047 (33.3) < 0.001 < 3881 (36.9) 56 (58.3) < 0.001 <

Heart failure 552 (7.5) 0362 (11.5) < 0.001 < 895 (8.6) 19 (19.8) < 0.001 <

BMI 26.2 � 3.9 25.4 � 4.5 < 0.001 < 26.3 � 4.1 26.7 � 4.80 0.348

eGFR 075.9 � 23.6 082.9 � 27.3 < 0.001 < 078.1 � 25.0 66.4 � 26.3 < 0.001 <

DM (%) 3138 (42.6) 1331 (42.30) 0.773 4407 (42.3) 62 (64.6) < 0.001 <

Smoking (%) 1605 (21.8) 711 (22.6) 0.361 2291 (22.0) 25 (26.0) 0.361

SBP (mmHg) 133.8 � 17.7 132.3 � 18.3 < 0.001 133.3 � 17.9 136.2 � 20.90 0.119

HDL-C 047.8 � 13.5 045.0 � 13.5 < 0.001 47.0 � 13.5 43.2 � 13.1 0.006

TG 141.0 � 94.0 0151.2 � 112.4 < 0.001 143.7 � 98.4 185.8 � 207.7 0.050

LDL-C 103.7 � 33.0 103.8 � 35.1 0.955 103.8 � 33.6 99.3 � 35.7 0.222

Non-HDL-C 131.3 � 35.7 132.8 � 37.8 0.048 131.3 � 36.3 134.3 � 45.50 0.583

Statin 4402 (59.8) 1882 (59.8) 0.964 6230 (59.8) 0.54 � 56.3 0.475

Antiplatelets 4522 (61.4) 1924 (61.2) 0.812 6373 (61.2) 73 (76)0. 0.003

ARB/ACEI 4240 (57.6) 1739 (55.3) 0.030 5924 (56.9) 55 (57.3) 0.900

Beta blockers 3652 (49.6) 1878 (59.7) < 0.001 5483 (52.7) 47 (49.0) 0.469

MACE within 1 yr 054 (0.7) 42 (1.7) 0.003

ACS, acute coronary syndrome; ARB/ACEi, angiotensin receptor blocker/angiotensin-converting enzyme inhibitor; ASCVD,

atherosclerotic cardiovascular disease; BMI, body mass index; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate;

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiac events; Non-

HDL-C, non high-density lipoprotein cholesterol; PAOD, peripheral arterial occlusive disease; SBP, systolic blood pressure; TG,

triglyceride.



SCORE2 endorsed by the European Society of Cardiology,

which have been validated in other corhorts.
21-23

Both

SCORE and Framingham score were shown to be useful

for risk discrimination in Asians in a prior study,
24

how-

ever they are both used to evaluate the risk of patients

without ASCVD. In contrast, the SMART score was devel-
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Central Illustration. Strategies for rigorous validation of machine learning models. ASCVD, atherosclerotic cardiovascular disease; AUC, area un-

der the curve; MLP, multilayer perceptron; XGBoost, eXtreme Gradient Boosting.

Table 3. Time-to-event analysis

Model/C-index SMART score Cox proportional hazards regression DeepHit Gradient boosted survival

Train* 0.69 0.65 0.70

Test
0.69 (0.67-0.72)

0.70 (0.64-0.73) 0.65 (0.60-0.69) 0.70 (0.60-0.71)

* 30% of the trained set was used as validation.

Table 2-1. Binary classification analysis by method (1): ten-fold validation development in whole group

Model SMART score* Logistic XGBoost MLP (neural network) Random Forest

ROC-AUC
(n = 10507)

0.70 (0.66-0.74) 0.67 (0.62-0.71) 0.72 (0.68-0.76) 0.62 (0.57-0.67) 0.73 (0.69-0.77)

Average precision
(n = 10507)

0.04 (0.01-0.07) 0.07 (0.03-0.11) 0.18 (0.13-0.23) 0.02 (0.00-0.04) 0.17 (0.12-0.22)

Most important
features

Age, eGFR, stroke,
PAOD

eGFR, ASCVD, DM,
BMI, antiplatelet

eGFR, systolic blood
pressure, BMI, age,
LDL-C

eGFR, Non-HDL-C, age,
LDL-C, ASCVD

Age, eGFR, ASCVD,
BMI, HDL

* Not cross validated.
ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; DM, diabetes mellitus; eGFR, estimated glomerular filtration
rate; HDL, high-density lipoprotein; LDL-C, low-density lipoprotein cholesterol; MLP, multilayer perceptron; PAOD, peripheral
arterial occlusive disease. ROC-AUC, area under the curve of the receiver operating characteristic curve; XGBoost, eXtreme
Gradient Boosting.

Table 2-2. Binary classification analysis by method (2): temporal validation

Model SMART Logistic XGBoost
MLP (neural

network)
Random Forest

Early group as train set, ROC-AUC
(ten-fold validation, n = 7362)

*0.70 (0.66-0.74)* 0.63 (0.56-0.70) 0.73 (0.68-0.78) 0.60 (0.53-0.67) 0.72 (0.66-0.78)

Late group as test set, ROC-AUC
(n = 3145)

0.70 (0.64-0.76) 0.68 (0.61-0.75) 0.66 (0.59-0.73) 0.65 (0.58-0.72) 0.69 (0.62-0.76)

Test average precision (n = 3145) 0.04 (0-0.08)00. 0.06 (0.01-0.11) 0.04 (0-0.08)0.0 0.04 (0-0.08)0.0 0.06 (0.01-0.11)

* Not cross validated. MLP, multilayer perceptron; ROC-AUC, area under the curve of the receiver operating characteristic curve;
XGBoost, eXtreme Gradient Boosting.



oped for use in patients with ASCVD. To the best of our

knowledge, this is the first study to validate the SMART

score in an Asian cohort.

Even with the much smaller sample size, this study

had similar performance to that of studies from the UK

and Korea, in which machine learning models were also

used (Table 4).
25,26

Of note, we used fewer parameters in

the current study. All of the models used in the UK study

were also tested in our cohort. In the Korean study, the

researchers used more variables, including history of

atrial fibrillation, rheumatoid arthritis, systemic lupus

erythematous, migraine, and the use of corticosteroids

and atypical antipsychotic medications. However, the

Korean study did not use variables of heart failure, stroke

or specified types of ASCVD, which were used in our

study. Our study has the strength of using additional va-

lidation methods in order to minimize overestimation

of model performance. Predicting events in the near fu-

ture may be achievable.
27

For example, other studies of

using machine learning to predict in-hospital mortality

after myocardial infarction have reported AUCs of 0.8 to

0.9.
28-30

All of the variables used in this study were re-

corded at enrolment. The low average precision score is

common in longer risk prediction models, and is related

to a low event rate.
31

Future studies with a larger cohort

and longer follow-up are likely to increase the accuracy

of prediction and stability of the performance.

Ideally, external validation should be used to con-

firm the performance of machine learning models.
32,33

Temporal validation, splitting the data based on time of

enrollment, is considered to be analogous to external

validation and may make prediction models more gener-

alizable.
34

The results of temporal validation in our study

suggest that further model adjustment may be required

before applying the risk prediction model to new cohorts.

In the temporal validation approach, there were some

significant differences in baseline risk factors between

the early and late groups in this study. The event rates

were also different, and the patients enrolled later had a

higher MACE rate. Such differences may also be encoun-

tered in real-world scenarios. Careful analysis of the val-

idation dataset and adjusting it accordingly may be re-

quired before application.
32,35

This concept is essential if

attempting to use “transfer learning”, that is, applying

models from Western cohorts to Taiwanese cohorts. On

the other hand, machine learning models may still be

subject to overfitting despite careful adjustments. Even

though cross-validation is a widely used method for mo-

del validation,
36

the XGBoost model in our study did not

generalize the results very well in temporal validation.

The performance of the SMART score, a European scor-

ing system, seemed to have a more stable performance.

This implies that external validation or temporal valida-

tion should be performed to confirm the robustness of

machine learning models.

Among the many machine learning models available

for binary outcome classification, XGBoost often yields

superior accuracy compared to others.
37

One survey

showed that random forest may also have similar per-

formance.
38

MLP classifier is also a commonly used mo-

del that can exhibit excellent performance, but the hy-

perparameters are difficult to tune.
39

Random forest

models are gaining popularity as they are faster to train

and have good accuracy. Prior studies have demonstrated

that machine learning did not consistently have advan-

tages over logistic regression in different cohorts.
40

Our

studies have shown considerable overlap of the impor-

tant features of different models. If the relationships be-

tween the features and outcomes were mostly linear,

the non-linear machine learning models did not neces-
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Table 4. Comparison of performance of various machine learning models in different cohorts

Cohort Baseline risk
Sample

size

Variables

used
Best algorithm AUC Validation

UK biobank
28

No CVD 423,604 473 Ensemble of XgBoost, neural

network, random forest

0.77 Internal validation: ten-fold

validation

Korean
27

No CVD, statin

naive

222,998 016 Neural network 0.75 Internal validation: Random

split 70-30%

Taiwan (this work) With or

without CVD

010,507 022 XgBoost, random forest 0.73 Internal validation: ten-fold

validation, temporal validation,

time-to-event analysis

AUC, area under the receiver operating characteristic curve; CVD, cardiovascular disease.



sarily have superior performance to the logistic regres-

sion model. However, in the present study we demon-

strated that using a machine learning model is much

easier for beginners in the research field to develop

ASCVD risk scoring systems with at least modest perfor-

mance comparable to that of traditional methods which

may require more mature medical and complicated sta-

tistical knowledge. With a larger sample size, more clini-

cal variables, and further machine learning, the devel-

oped models may evolve and perform better for this po-

pulation. This may in turn lead to the development of

good ASCVD risk scoring systems in Taiwan.

Having serial follow-up data of the variables as input

may enhance model performance. One study using up-

dated follow-up data of a cancer cohort achieved an

AUC of 0.79 with a sample size of only 585.
41

In addi-

tion, a previous meta-analysis reported that machine

learning for predicting chronic coronary artery disease

based on imaging had an AUC ranging from 0.8 to 0.9.
42

Some algorithms rely on advanced biomarkers (e.g. tis-

sue necrosis factor-� soluble receptor, interleukin-2 so-

luble receptor) and imaging (e.g. intravascular ultra-

sound, cardiac magnetic resonance imaging, single pho-

ton emission computed tomography), which are not used

by the aforementioned conventional tools.
43,44

It is likely

that incorporating genetic profile, biomarkers such as

CRP and lipoprotein (a)
45

and imaging such as CT-angio-

graphy and echocardiography will enhance the predic-

tion accuracy.
46

In addition, novel agents such as gli-

flozins and glucagon-like peptide 1 agonists are also li-

kely to alter the course of cardiovascular disease in the

future, and newer risk prediction models are needed.

Machine learning is likely to aid the interpretation of

high dimensional features in the future.

There are several limitations to this study. First, the

performances of our models were only modest. Second,

we did not prove that each hyperparameter used in the

models was already the best. Third, although the perfor-

mance of XGBoost was shown to be overly optimistic in

the training set of the temporal validation method, we

did not present solutions to the problems met in the test

set. Hence, further tuning of the models may improve

performance. With a larger sample size, more clinical

variables, and further machine learning, the developed

models may evolve and perform better for this popula-

tion. There are still other problems with machine learn-

ing, including ethical issues, data preparation, model ro-

bustness, and model explainability, which need to be

managed in the future.
47,48

The strength of this study is

that we show consistent performance using limited re-

sources.

CONCLUSIONS

In conclusion, machine learning algorithms with

transfer learning may be a useful tool for the develop-

ment of CV risk prediction models and may help to im-

prove patient care in the future. The use of larger co-

horts, successful knowledge transfer, incorporating no-

vel parameters and careful model tuning and validation

are important for future machine learning application to

health care in Taiwan.
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