Abstract
A structure-level smart deployable truss (SDT) was further studied for on-orbit verification on the SJ18 Geostationary Satellite in this work on the basis of a material-level validation of a shape-memory polymer composite (SMPC) sheet on the SJ17 Geostationary Satellite in 2016. In the SDT, a shape-memory alloy (SMA) mechanism was used to replace traditional pyrotechnic devices for locking and releasing, and SMPC actuation laminates were employed to replace traditional motor or spring driving mechanisms. With a strict parameter constrain of mass, size, and stiffness, the current form of the SDT flight hardware was finally obtained through several cycles of optimization design. Its systematical ground-based experiments were conducted, and the overall structural and functional performance met the demands of the aerospace standards of China. The locking force and expansion breaking force of the SMA releasing mechanism were [Formula: see text] and [Formula: see text], ensuring the locking and unlocking reliability for the movable parts with mass 5 kg. The actuation force of all SMPC laminates decreased from [Formula: see text] (0°) to [Formula: see text] (165°) with a recovery duration of [Formula: see text], which was strong enough for SDT deployment in space. The shape-memory materials show great prospects for smart deployable structures in space.
Funder
National Natural Science Foundation of China
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Space and Planetary Science,Aerospace Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献