Unsteady Lifting-Line Theory for Camber Morphing Wings State-Space Aeroelastic Modeling

Author:

Giansante Riccardo1,Bernardini Giovanni1,Gennaretti Massimo1ORCID

Affiliation:

1. Roma Tre University, 00146 Rome, Italy

Abstract

A novel frequency-domain analytical-numerical model for the aerodynamic solution of camber morphing wings is developed. The model combines an unsteady lifting-line formulation with Küssner–Schwarz aerodynamic theory to provide the pressure distribution and thus the transcendental aerodynamic matrix that relates the generalized aerodynamic forces to the Lagrangian coordinates of a given wing structural dynamics model. The state-space form of the aerodynamic loads is obtained from the rational matrix approximation of the aerodynamic matrix. This, combined with the wing structural dynamics operator, can readily provide the state-space form of the aeroelastic problem. To assess the accuracy of the proposed aerodynamic solution method, numerical investigations are performed. These consist of its application to several conventional wing configurations and wings with camber morphing, followed by the comparisons of the corresponding solutions with the predictions given by a well-validated panel-method solver for potential flows. These results are shown to be in very good agreement, thus demonstrating that the proposed approach can capture the effects due to wing tapering, sweep angle, and camber morphing, while requiring a remarkably lower computational effort. The excellent accuracy of a few-pole finite-state approximation of the aerodynamic matrix is finally proven for a swept wing with camber morphing.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3